Background: D-004, a lipid extract of the fruit of Roystonea regia, contains a mixture of fatty acids-mainly oleic, lauric, palmitic, and myristic acids, with oleic acid being among the most abundant-that has been found to reduce the risk for prostatic hyperplasia (PH) induced with testosterone (T) in rats. The pharmacokinetic profile of D-004 has not been reported.
Objective: The objective of this study in rats was to assess plasma levels, tissue distribution, and excretion of total radioactivity (TR) after single-dose administration of oral D-004 radiolabeled with ((3)H)-oleic acid, as a surrogate for the pharmacokinetics of D-004.
Methods: This experimental study was conducted at the Pharmacology Department, Center of Natural Products, National Center for Scientific Research, Havana, Cuba. Single doses of suspensions of ((3)H)-oleic acid 0.16 μCi/mg mixed with D-004 400 mg/kg (radioactive dose/animal 7.2 μCi) were given orally to male Wistar rats weighing 150 to 200 g assigned to the treated or control group. Three rats were euthanized at each of the following times: 0.25, 0.5, 1, 1.5, 2, 4, 8, 24, 48, 72, 96, and 144 hours after study drug administration. After administration, the rats euthanized at the last experimental time point were housed individually in metabolism cages. Urine and feces samples were collected daily. At each time point, blood samples were drawn and plasma samples were obtained using centrifugation. After euthanization, tissue samples (liver, lungs, spleen, brain, kidneys, adipose tissue, muscle, stomach, small and large intestines, adrenal glands, heart, testes, prostate, and seminal vesicles) were quickly removed, washed, blotted, and homogenized. Plasma (100 μL), tissue aliquots (100 mg), feces (10 mg), and urine (100μL) were dissolved and TR was measured. Samples were assayed in duplicate. Results were expressed in μgEq of radio-labeled oleic acid per milliliter of plasma or urine or gram of tissue or feces. Plasma, tissue, feces, and urine samples of rats that did not receive ((3)H)-oleic acid were used as controls. Excretion was expressed as the percentage of the radioactivity excreted via each route with respect to the total radioactive dose administered to each rat.
Results: A total of 50 rats were included in the experiment (mean age, 4 weeks; mean weight, 310 g). Absorption was rapid; mean Cmax was 195.56 (31.12) μgEq/mL, and mean Tmax was 2 hours. Thereafter, a biphasic decay of TR was found: a rapid first phase (t1/2α, 1.33 hours), followed by a slower second elimination phase (t1/2β, 36.07 hours). Radioactivity was rapidly and broadly distributed throughout the tissues, with more accumulating in the prostate than elsewhere. In the first 8 hours, accumulation of TR was greatest in the prostate, followed by the liver, small intestine, and plasma. Subsequently, TR increased in the small intestine, while it decreased in the liver and plasma. In contrast, over the periods of 24 and 144 hours after administration, TR increased in the adipose tissue, while it decreased in the other tissues and plasma. During those intervals, TR was greatest in the prostate, followed by adipose tissue. Mean peak radioactivity in the prostate (562.41 μgEq/g) was reached at 4 hours and decreased slowly thereafter. The prostate had the highest values of t1/2β and cumulative AUC compared with the other tissues and plasma. Mean (SD) TR was similar in feces (33.48% [4.90%]) and urine (28.96% [5.32%]), with total excretion being 62.40% (5.90%) of the administered dose.
Conclusions: In this experimental study, after single-dose administration of oral D-004 radiolabeled with ((3)H)-oleic acid in rats, TR was rapidly and widely distributed across the tissues, with the prostate having the highest accumulation of radioactivity. Excretion of TR was limited, with similar amounts being excreted in feces and urine. The broad distribution of radiolabeled oleic acid and/or its metabolites suggests (SD) pharmacokinetic rationale for the effectiveness of D-004 in reducing the risk for PH induced with T in rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965973 | PMC |
http://dx.doi.org/10.1016/j.curtheres.2006.12.005 | DOI Listing |
Int J Mol Sci
March 2019
Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea.
Peanut sprouts (PS), which are germinated peanut seeds, have recently been reported to have anti-oxidant, anti-inflammatory, and anti-obesity effects. However, the underlying mechanisms by which PS modulates lipid metabolism are largely unknown. To address this question, serial doses of PS extract (PSE) were added to 3T3-L1 cells during adipocyte differentiation.
View Article and Find Full Text PDFContext: Obesity and its associated diseases are an increasing problem around the world. One hyperglycemic remedy is reduction of glucose absorption performed by suppressing digestion of carbohydrates and lipids through the use of inhibitors. Phalaris canariensis (P canariensis) is a species belonging to the Graminaceae family and is used in traditional medicine in Mexico for treatment of diabetes and obesity.
View Article and Find Full Text PDFPLoS One
May 2016
Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
Metal-imbalance has been reported as a contributor factor for the degeneration of dopaminergic neurons in Parkinson Disease (PD). Specifically, iron (Fe)-overload and copper (Cu) mis-compartmentalization have been reported to be involved in the injury of dopaminergic neurons in this pathology. The aim of this work was to characterize the mechanisms of membrane repair by studying lipid acylation and deacylation reactions and their role in oxidative injury in N27 dopaminergic neurons exposed to Fe-overload and Cu-supplementation.
View Article and Find Full Text PDFNeutral lipids are deposited in intracellular compartments called lipid droplets, which are known to be critically implicated in regulation of cellular lipid metabolism. These organelles consist of a core of neutral lipids, mainly triacylglycerol (TAG) and cholesteryl esters, surrounded by phospholipid monolayer. Using Nile red lipid staining and [3H]-arachidonic and [3H]-oleic acids as precursors for lipid biosynthesis, we have evaluated the mechanisms of lipid body induction elicited by exogenous fatty acids within primary cultured epithelial cells from the frog urinary bladder.
View Article and Find Full Text PDFInt J Med Sci
February 2012
Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
Background: Understanding the mechanisms of long chain fatty acid (LCFA) uptake in hepatic cells is of high medical importance to treat and to prevent fatty liver disease (FLD). ACSs (Acyl-CoA synthetases) are a family of enzymes that catalyze the esterification of fatty acids (FA) with CoA. Recent studies suggest that ACS enzymes drive the uptake of LCFA indirectly by their enzymatic activity and could promote special metabolic pathways dependent on their localization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!