The construction and operation of a low-cost plotter for fabrication of microarrays for multiplexed single-cell analyses is reported. The printing head consists of polymeric pyramidal pens mounted on a rotation stage installed on an aluminium frame. This construction enables printing of microarrays onto glass substrates mounted on a tilt stage, controlled by a Lab-View operated user interface. The plotter can be assembled by typical academic workshops from components of less than 15,000 Euro. The functionality of the instrument is demonstrated by printing DNA microarrays on the area of 0.5 cm2 using up to three different oligonucleotides. Typical feature sizes are 5 μm diameter with a pitch of 15 μm, leading to densities of up to 10(4)-10(5) spots/mm2. The fabricated DNA microarrays are used to produce sub-cellular scale arrays of bioactive epidermal growth factor peptides by means of DNA-directed immobilization. The suitability of these biochips for cell biological studies is demonstrated by specific recruitment, concentration, and activation of EGF receptors within the plasma membrane of adherent living cells. This work illustrates that the presented plotter gives access to bio-functionalized arrays usable for fundamental research in cell biology, such as the manipulation of signal pathways in living cells at subcellular resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201303390 | DOI Listing |
Lab Chip
October 2024
Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
Blood and lymphatic vessels in the body are central to molecular and cellular transport, tissue repair, and pathophysiology. Several approaches have been employed for engineering microfabricated blood and lymphatic vessels , yet traditionally these approaches require specialized equipment, facilities, and research training beyond the capabilities of many biomedical laboratories. Here we present xurography as an inexpensive, accessible, and versatile rapid prototyping technique for engineering cylindrical and lumenized microvessels.
View Article and Find Full Text PDFBiosens Bioelectron
October 2024
Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain. Electronic address:
In this work, a nanostructured conductive film possessing nanozyme features was straightforwardly produced via laser-assembling and integrated into complete nitrocellulose sensors; the cellulosic substrate allows to host live cells, while the nanostructured film nanozyme activity ensures the enzyme-free real-time detection of hydrogen peroxide (HO) released by the sames. In detail, a highly exfoliated reduced graphene oxide 3D film decorated with naked platinum nanocubes was produced using a CO-laser plotter via the simultaneous reduction and patterning of graphene oxide and platinum cations; the nanostructured film was integrated into a nitrocellulose substrate and the complete sensor was manufactured using an affordable semi-automatic printing approach. The linear range for the direct HO determination was 0.
View Article and Find Full Text PDFLab Chip
August 2023
Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland.
Good electronic ( = ∼5 Ω sq) and optical properties (transmittance: >83%) make indium tin oxide (ITO) an attractive electrode substrate. Despite the commercial availability of high-quality ITO and some low-cost methods for direct deposition being in use by now, the definition of patterns is still a concern. Putting their popularity and extensive use aside, the manufacturing of ITO electrodes so far lacks a rapid, highly reproducible, flexible, cost-effective, easy patterning process that could surpass difficult, time-consuming techniques such as lithography.
View Article and Find Full Text PDFAnal Chim Acta
July 2023
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand. Electronic address:
The microfluidic paper-based analytical device (μPAD) platform is gaining attention as a low-cost, portable, and disposable detection tool. However, the limitations of traditional fabrication methods include poor reproducibility and the use of hydrophobic reagents. In this study, an in-house computer-controlled X-Y knife plotter and pen plotter were used to fabricate μPADs, resulting in a simple, more rapid, reproducible process that consumes less volume of reagents.
View Article and Find Full Text PDFNanoscale
March 2023
Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
While pyrolyzed paper (PP) is a green and abundant material that can provide functionalized electrodes with wide detection windows for a plethora of targets, it poses long-standing challenges against sensing assays such as poor electrical conductivity, with resistivities generally higher than 200.0 mΩ cm (, gold and silver show resistivities 1000-fold lower, ∼0.2 mΩ cm).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!