Constructing 3D branched nanowire coated macroporous metal oxide electrodes with homogeneous or heterogeneous compositions for efficient solar cells.

Angew Chem Int Ed Engl

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China).

Published: May 2014

Light-harvesting and charge collection have attracted increasing attention in the domain of photovoltaic cells, and can be facilitated dramatically by appropriate design of a photonic nanostructure. However, the applicability of current light-harvesting photoanode materials with single component and/or morphology (such as, particles, spheres, wires, sheets) is still limited by drawbacks such as insufficient electron-hole separation and/or light-trapping. Herein, we introduce a universal method to prepare hierarchical assembly of macroporous material-nanowire coated homogenous or heterogeneous metal oxide composite electrodes (TiO2 -TiO2 , SnO2 -TiO2 , and Zn2 SnO4 -TiO2 ; homogenous refers to a material in which the nanowire and the macroporous material have the same composition, i.e. both are TiO2 . Heterogeneous refers to a material in which the nanowires and the macroporous material have different compositions). The dye-sensitized solar cell based on a TiO2 -macroporous material-TiO2 -nanowire homogenous composition electrode shows an impressive conversion efficiency of 9.51 %, which is much higher than that of pure macroporous material-based photoelectrodes to date.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201402371DOI Listing

Publication Analysis

Top Keywords

metal oxide
8
refers material
8
macroporous material
8
macroporous
5
constructing branched
4
branched nanowire
4
nanowire coated
4
coated macroporous
4
macroporous metal
4
oxide electrodes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!