Digital and analog gene circuits for biotechnology.

Biotechnol J

Synthetic Biology Group, Research Lab of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard Biophysics Program, Boston, MA, USA.

Published: May 2014

Biotechnology offers the promise of valuable chemical production via microbial processing of renewable and inexpensive substrates. Thus far, static metabolic engineering strategies have enabled this field to advance industrial applications. However, the industrial scaling of statically engineered microbes inevitably creates inefficiencies due to variable conditions present in large-scale microbial cultures. Synthetic gene circuits that dynamically sense and regulate different molecules can resolve this issue by enabling cells to continuously adapt to variable conditions. These circuits also have the potential to enable next-generation production programs capable of autonomous transitioning between steps in a bioprocess. Here, we review the design and application of two main classes of dynamic gene circuits, digital and analog, for biotechnology. Within the context of these classes, we also discuss the potential benefits of digital-analog interconversion, memory, and multi-signal integration. Though synthetic gene circuits have largely been applied for cellular computation to date, we envision that utilizing them in biotechnology will enhance the efficiency and scope of biochemical production with living cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077165PMC
http://dx.doi.org/10.1002/biot.201300258DOI Listing

Publication Analysis

Top Keywords

gene circuits
16
digital analog
8
variable conditions
8
synthetic gene
8
circuits
5
gene
4
analog gene
4
biotechnology
4
circuits biotechnology
4
biotechnology biotechnology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!