Given their high neuroprotective potential, ligands that block GluN2B-containing N-methyl-D-aspartate (NMDA) receptors by interacting with the ifenprodil binding site located on the GluN2B subunit are of great interest for the treatment of various neuronal disorders. In this study, a novel class of GluN2B-selective NMDA receptor antagonists with the benzo[7]annulene scaffold was prepared and pharmacologically evaluated. The key intermediate, N-(2-methoxy-5-oxo-6,7,8,9-tetrahydro-5H-benzo[7]annulen-7-yl)acetamide (11), was obtained by cyclization of 3-acetamido-5-(3-methoxyphenyl)pentanoic acid (10 b). The final reaction steps comprise hydrolysis of the amide, reduction of the ketone, and reductive alkylation, leading to cis- and trans-configured 7-(ω-phenylalkylamino)benzo[7]annulen-5-ols. High GluN2B affinity was observed with cis-configured γ-amino alcohols substituted with a 3-phenylpropyl moiety at the amino group. Removal of the benzylic hydroxy moiety led to the most potent GluN2B antagonists of this series: 2-methoxy-N-(3-phenylpropyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-7-amine (20 a, Ki =10 nM) and 2-methoxy-N-methyl-N-(3-phenylpropyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-7-amine (23 a, Ki =7.9 nM). The selectivity over related receptors (phencyclidine binding site of the NMDA receptor, σ1 and σ2 receptors) was recorded. In a functional assay measuring the cytoprotective activity of the benzo[7]annulenamines, all tested compounds showed potent NMDA receptor antagonistic activity. Cytotoxicity induced via GluN2A subunit-containing NMDA receptors was not inhibited by the new ligands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.201300547 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!