(1-Adamantyl)methyl glycidyl ether: a versatile building block for living polymerization.

Macromol Rapid Commun

Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz (JGU), Duesbergweg 10-14, D-55128, Mainz, Germany; Graduate School Materials Science in Mainz (MAINZ), Staudinger Weg 9, D-55128, Mainz, Germany.

Published: June 2014

(1-Adamantyl)methyl glycidyl ether (AdaGE) is introduced as a versatile monomer for oxyanionic polymerization, enabling controlled incorporation of adamantyl moieties in aliphatic polyethers. Via copolymerization with ethoxyethyl glycidyl ether (EEGE) and subsequent cleavage of the acetal protection groups of EEGE, hydrophilic linear polyglycerols with an adjustable amount of pendant adamantyl moieties are obtained. The adamantyl unit permits control over thermal properties and solubility profile of these polymers (LCST). Additionally, AdaGE is utilized as a termination agent in carbanionic polymerization, affording adamantyl-terminated polymers. Using these structures as macroinitiators for the polymerization of ethylene oxide affords amphiphilic, in-chain adamantyl-functionalized block copolymers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201400017DOI Listing

Publication Analysis

Top Keywords

glycidyl ether
12
1-adamantylmethyl glycidyl
8
adamantyl moieties
8
ether versatile
4
versatile building
4
building block
4
block living
4
polymerization
4
living polymerization
4
polymerization 1-adamantylmethyl
4

Similar Publications

In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent furfuryl glycidyl ether (FGE) cured by iso-MTHPA. At the winding stage, the reinforcing film was placed in the middle layer of the CFRP.

View Article and Find Full Text PDF

Synthesis and characterization of photo-cross-linkable quince seed-based hydrogels for soft tissue engineering applications.

Carbohydr Polym

March 2025

Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Azrieli Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada; Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada. Electronic address:

The convenience, versatility, and biocompatibility of photocrosslinkable hydrogel precursors make them promising candidates for developing tissue engineering scaffolds. However, the current library of photosensitive materials is limited. This study reports, for the first time, the modification of quince seed mucilage (QS) with glycidyl methacrylate (GM), resulting in the synthesis of methacrylated QS (QSGM).

View Article and Find Full Text PDF

Differences in Rejuvenation Mechanisms and Physical Properties of Aged Styrene-Butadiene-Styrene (SBS)-Modified Bitumen by Mono-Epoxy and Di-Epoxy Compounds.

Polymers (Basel)

December 2024

Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, South 2nd Ring Road Middle Section, Xi'an 710064, China.

Studying the mechanisms and effects of rejuvenators on SBS-modified bitumen is crucial for repairing degraded SBS and recycling aged SBS-modified bitumen (ASMB), thereby contributing to the sustainable development of bitumen pavements. This research examines the roles of mono-epoxy Alkyl (C12-C14) glycidyl ether (AGE) and di-epoxy 1,6-Hexanediol diglycidyl ether (HDE) under the catalysis of N,N-dimethyl benzyl amine (BDMA) in repairing degraded SBS chains. Aromatic oil (ORSMB)-, AGE-aromatic oil (ARSMB)-, and HDE-aromatic oil (HRSMB)-rejuvenated bitumen are analyzed for their chemical structures, physical properties, and rheological properties.

View Article and Find Full Text PDF

Amphiphilic bottlebrush block copolymers (BBCs) with tadpole-like, coil-rod architecture can be used to self-assemble into functional polymer nanodiscs directly in water. The hydrophobic segments of the BBC were tuned via the ratio of ethoxy-ethyl glycidyl ether (EE) to tetrahydropyranyl glycidyl ether (TP) within the grafted polymer sidechains. In turn, this variation controlled the sizes, pH-responsiveness, and drug loading capacity of the self-assembled nanodiscs.

View Article and Find Full Text PDF

Thermoelectrochemical Method for Quantification of the Micellization Entropy of Redox-Active Polymers.

ACS Macro Lett

January 2025

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Redox-active micelles undergo reversible association and dissociation in response to their redox potential and are promising materials for various applications, such as drug delivery and bioimaging. Evaluation of the micellization entropy is critical in controlling the thermodynamics of micelle formation. However, conventional methods such as isothermal titration calorimetry and surface tensiometry require a long measurement time to observe changes in the heat flow or the surface tension caused by the micellization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!