The chronic administration of the β-adrenoreceptor agonist isoproterenol (IsoP) is used in animals to study the mechanisms of cardiac hypertrophy and failure associated with a sustained increase in circulating catecholamines. Time-dependent changes in myocardial blood flow (MBF), morphological and functional parameters were assessed in rats in vivo using multimodal cardiac MRI. Energy metabolism, oxidative stress and the nitric oxide (NO) pathway were evaluated in isolated perfused rat hearts following 7 days of treatment. Male Wistar rats were infused for 7 days with IsoP or vehicle using osmotic pumps. Cine-MRI and arterial spin labeling were used to determine left ventricular morphology, function and MBF at days 1, 2 and 7 after pump implantation. Isolated hearts were then perfused, and high-energy phosphate compounds and intracellular pH were followed using ³¹P MRS with simultaneous measurement of contractile function. Total creatine and malondialdehyde (MDA) contents were measured by high-performance liquid chromatography. The NO pathway was evaluated by NO synthase isoform expression and total nitrate concentration (NO(x)). In IsoP-treated rats, left ventricular mass was increased at day 1 and maintained. Wall thickness was increased with a peak at day 2 and a tendency to return to baseline values at day 7. MBF was markedly increased at day 1 and returned to normal values between days 1 and 2. The rate-pressure product and phosphocreatine/adenosine triphosphate ratio in perfused hearts were reduced. MDA, endothelial NO synthase expression and NO(x) were increased. Sustained high cardiac function and normal MBF after 24 h of IsoP infusion indicate imbalance between functional demand and blood flow, leading to morphological changes. After 1 week, cardiac hypertrophy and decreased function were associated with impaired phosphocreatine, increased oxidative stress and up-regulation of the NO pathway. These results provide supplemental information on the evolution of the different contributing factors leading to morphological and functional changes in this model of cardiac hypertrophy and failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/nbm.3088 | DOI Listing |
BMC Med Imaging
December 2024
Department of Radiology, School of Medicine, University of Health and Allied Sciences (UHAS), Ho, Ghana.
Background: Microcardia and cardiomegaly are good diagnostic and prognostic tools for several diseases. This study investigated the distribution of microcardia and cardiomegaly among students of the University of Health and Allied Sciences (UHAS) in Ghana to determine the prevalence of microcardia and cardiomegaly across gender, and to evaluate the correlation between the presence of these heart conditions and age.
Methods: This retrospective study involved a review of 4519 postero-anterior (PA) chest X-rays (CXRs) between 2020 and 2023.
Vet Sci
November 2024
Department of Small Animal Clinical Science, School of Veterinary Science, University of Liverpool, Cardiology Service, Small Animal Teaching Hospital, Chester High Road, Neston CH64 7TE, UK.
The present study aimed to evaluate the effects of chronic pimobendan monotherapy on cardiac size in dogs with stage B2 myxomatous mitral valve disease (MMVD). Data from 31 dogs diagnosed with MMVD and cardiomegaly (LA/Ao ≥ 1.6 and LVIDdn ≥ 1.
View Article and Find Full Text PDFEur J Med Res
December 2024
Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.
Introduction: IgA nephropathy (IgAN) is one of the most prevalent forms of glomerulonephritis worldwide, particularly affecting 40-50% of the East Asian population. Cardiovascular mortality represents a leading cause of death in patients with IgAN. Left ventricular hypertrophy (LVH) serves as a predictor of heart failure and cardiovascular mortality.
View Article and Find Full Text PDFPharmacol Res
December 2024
Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland. Electronic address:
Wnt and Notch signaling pathways play crucial roles in the development and homeostasis of the cardiovascular system. These pathways regulate important cellular processes in cardiomyocytes, endothelial cells, and smooth muscle cells, which are the key cell types involved in the structure and function of the heart and vasculature. During embryonic development, Wnt and Notch signaling coordinate cell fate specification, proliferation, differentiation, and morphogenesis of the heart and blood vessels.
View Article and Find Full Text PDFProbl Radiac Med Radiobiol
December 2024
State Institution «National Research Center of Radiation Medicine, Hematology and Oncology of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine.
Objective: To conduct a comparative analysis of cardiovascular system state in emergency workers (EW) of theaccident at the Chornobyl NPP and servicemen (SM) of Ukraine Armed Forces (UAF) who took part in the fightagainst russian military aggression, and to assess the role of military service factors on the development of cardiac pathology.
Materials And Methods: The study included 81 male EW and 161 SM of UAF, who were examined and treated in thecardiology department of NRCRMHO from 2022 to 2024. The average age of the surveyed EW was (56.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!