Eulimnogammarus verrucosus is an amphipod endemic to the unique ecosystem of Lake Baikal and serves as an emerging model in ecotoxicological studies. We report here on a survey sequencing of its genome as a first step to establish sequence resources for this species. From a single lane of paired-end sequencing data, we estimated the genome size as nearly 10 Gb and we obtained an overview of the repeat content. At least two-thirds of the genome are non-unique DNA, and a third of the genomic DNA is composed of just five families of repetitive elements, including low-complexity sequences. Attempts to use off-the-shelf assembly tools failed on the available low-coverage data both before and after removal of highly repetitive components. Using a seed-based approach we nevertheless assembled short contigs covering 33 pre-microRNAs and the homeodomain-containing exon of nine Hox genes. The absence of clear evidence for paralogs implies that a genome duplication did not contribute to the large genome size. We furthermore report the assembly of the mitochondrial genome using a new, guided "crystallization" procedure. The initial results presented here set the stage for a more complete sequencing and analysis of this large genome.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jez.b.22560DOI Listing

Publication Analysis

Top Keywords

eulimnogammarus verrucosus
8
genome size
8
large genome
8
genome
7
glimpse genome
4
genome baikalian
4
baikalian amphipod
4
amphipod eulimnogammarus
4
verrucosus eulimnogammarus
4
verrucosus amphipod
4

Similar Publications

Solar ultraviolet (UV) is among the most important ecological factors shaping the composition of biota on the planet's surface, including the upper layers of waterbodies. Inhabitants of dark environments recently evolving from surface organisms provide natural opportunities to study the evolutionary losses of UV adaptation mechanisms and better understand how those mechanisms function at the biochemical level. The ancient Lake Baikal is the only freshwater reservoir where deep-water fauna emerged, and its diverse endemic amphipods (Amphipoda, Crustacea) now inhabit the whole range from highly transparent littoral to dark depths of over 1600 m, which makes them a convenient model to study UV adaptation.

View Article and Find Full Text PDF

Comparative studies of reproductive biology and formation of reproductive isolation need appropriate model systems, such as groups of related species. The amphipods (Crustacea: Amphipoda) of ancient Lake Baikal are an attractive group for such works, as they consist of several hundred species that radiated within the lake and have very different levels of intraspecific genetic diversity and reproduction timing. We have previously shown that one of the most widely distributed and best studied littoral species, Eulimnogammarus verrucosus (Gersfeldt, 1858), comprises cryptic species exhibiting a post-zygotic reproductive barrier.

View Article and Find Full Text PDF

Lake Baikal is one of the largest and oldest freshwater reservoirs on the planet with a huge endemic diversity of amphipods (Amphipoda, Crustacea). These crustaceans have various symbiotic relationships, including the rarely described phenomenon of leech parasitism on amphipods. It is known that leeches feeding on hemolymph of crustacean hosts can influence their physiology, especially under stressful conditions.

View Article and Find Full Text PDF

The multixenobiotic resistance (MXR) mechanism has been demonstrated to be present in a wide range of species, including aquatic organisms. However, amphipods (Crustacea: Malacostraca: Amphipoda), which constitute a large order of arthropods, are extremely poorly studied in this regard. Information on MXR proteins in these animals would be highly relevant, as some amphipods are important models in ecotoxicology due to their roles in many freshwater environments, including the ancient Lake Baikal.

View Article and Find Full Text PDF

The cellular heat shock response (HSR) comprises transcriptomic and proteomic reactions to thermal stress. It was here addressed, how the proteomic, together with the transcriptomic HSR, relate to the thermal sensitivities of three cold-adapted but differently thermo-sensitive freshwater amphipod species. The proteomes of thermosensitive Eulimnogammarus verrucosus and thermotolerant Eulimnogammarus cyaneus, both endemic to Lake Baikal, and of thermotolerant Holarctic Gammarus lacustris were investigated upon 24 h exposure to the species-specific 10 % lethal temperatures (LT10).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!