Contrasting long-term records of biomass burning in wet and dry savannas of equatorial East Africa.

Glob Chang Biol

Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, Bern, CH-3013, Switzerland.

Published: September 2014

Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long-term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well-dated lake-sediment records in western Uganda and central Kenya. We compared these high-resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern-day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture-balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.12583DOI Listing

Publication Analysis

Top Keywords

biomass burning
12
wet dry
8
dry savannas
8
equatorial east
8
east africa
8
western uganda
8
contrasting long-term
4
long-term records
4
biomass
4
records biomass
4

Similar Publications

Posttranslational modifications in cardiac metabolic remodeling mediated by metabolites: Implications for disease pathology and therapeutic potential.

Metabolism

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China. Electronic address:

The nonenergy-producing or biomass-accumulating functions of metabolism are attracting increasing attention, as metabolic changes are gaining importance as discrete signaling pathways in modulating enzyme activity and gene expression. Substantial evidence suggests that myocardial metabolic remodeling occurring during diabetic cardiomyopathy, heart failure, and cardiac pathological stress (e.g.

View Article and Find Full Text PDF

Characterising Carbon Monoxide Household Exposure and Health Impacts in High- and Middle-Income Countries-A Rapid Literature Review, 2010-2024.

Int J Environ Res Public Health

January 2025

Environmental Epidemiology Team, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency (UKHSA), Didcot OX11 0RQ, UK.

Carbon monoxide (CO) is a toxic gas, and faulty gas appliances or solid fuel burning with incomplete combustion are possible CO sources in households. Evaluating household CO exposure models and measurement studies is key to understanding where CO exposures may result in adverse health outcomes. This assists the assessment of the burden of disease in high- and middle-income countries and informs public health interventions in higher-risk environments.

View Article and Find Full Text PDF

Particulate matter (PM), particularly fine (PM) and ultrafine (PM) particles, originates from both natural and anthropogenic sources, such as biomass burning and vehicle emissions. These particles contain harmful compounds that pose significant health risks. Upon inhalation, ingestion, or dermal contact, PM can penetrate biological systems, inducing oxidative stress, inflammation, and DNA damage, which contribute to a range of health complications.

View Article and Find Full Text PDF

Evaluating the Laboratory Performance of Pellet-Fueled Semigasifier Cookstoves.

Environ Sci Technol

January 2025

Air Methods and Characterization Division, U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States.

This study examines three representative semigasifier cookstove models each burning four types of pelletized-biomass fuel (hardwood, peanut hull, rice husk, and wheat straw) using the International Organization for Standardization (ISO) 19867-1:2018 protocol. ISO tier ratings for fine particulate matter (PM) and carbon monoxide (CO) emissions ranged 1-4 and 2-5 (where 5 = cleanest), respectively, suggesting that pellet-fueled cookstoves may provide substantial emissions reductions, dependent upon stove/fuel matching and operation, over other biomass-fueled cooking alternatives. PM emission factors based on useful energy delivered (EF) varied by up to 25-fold, and organic and elemental carbon (OC and EC) EF values respectively varied by >200- and ∼100-fold, reflecting complex variability in PM composition.

View Article and Find Full Text PDF

Airborne quasi-ultrafine particle samples were collected from different outdoor sites in Barcelona (NE Spain, 35 samples) and the Valencia subway (about 400 km south of Barcelona, 3 samples). Locations and schedules were designed to cover cold and warm seasons and to represent the impact of different types of transport (cars, trains, ships, and planes). Extracts from PTFE filters (methanol:dichloromethane 1:2) were used to test toxic effects in human cell lines (Induction of reactive oxygen species, inflammatory response) and in zebrafish embryos (expression of xenobiotic response-related genes, cyp1a1, gsa1 and hao1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!