Previous studies demonstrated that ingestion of the emetic compound copper sulfate (CuSO4) alters the responses to vestibular stimulation of a large fraction of neurons in brainstem regions that mediate nausea and vomiting, thereby affecting motion sickness susceptibility. Other studies suggested that the processing of vestibular inputs by cerebellar neurons plays a critical role in generating motion sickness and that neurons in the cerebellar fastigial nucleus receive visceral inputs. These findings raised the hypothesis that stimulation of gastrointestinal receptors by a nauseogenic compound affects the processing of labyrinthine signals by fastigial nucleus neurons. We tested this hypothesis in decerebrate cats by determining the effects of intragastric injection of CuSO4 on the responses of rostral fastigial nucleus to whole-body rotations that activate labyrinthine receptors. Responses to vestibular stimulation of fastigial nucleus neurons were more complex in decerebrate cats than reported previously in conscious felines. In particular, spatiotemporal convergence responses, which reflect the convergence of vestibular inputs with different spatial and temporal properties, were more common in decerebrate than in conscious felines. The firing rate of a small percentage of fastigial nucleus neurons (15%) was altered over 50% by the administration of CuSO4; the firing rate of the majority of these cells decreased. The responses to vestibular stimulation of a majority of these cells were attenuated after the compound was provided. Although these data support our hypothesis, the low fraction of fastigial nucleus neurons whose firing rate and responses to vestibular stimulation were affected by the administration of CuSO4 casts doubt on the notion that nauseogenic visceral inputs modulate motion sickness susceptibility principally through neural pathways that include the cerebellar fastigial nucleus. Instead, it appears that convergence of gastrointestinal and vestibular inputs occurs mainly in the brainstem.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112144 | PMC |
http://dx.doi.org/10.1007/s00221-014-3898-9 | DOI Listing |
J Neurol
January 2025
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Introduction: While cerebral amyloid angiopathy is likely responsible for intracerebral hemorrhage (ICH) occurring in superficial (grey matter, vermis) cerebellar locations, it is unclear whether hypertensive arteriopathy (HA), the other major cerebral small vessel disease (cSVD), is associated with cerebellar ICH (cICH) in deep (white matter, deep nuclei, cerebellar peduncle) regions. We tested the hypothesis that HA-associated neuroimaging markers are significantly associated with deep cICH compared to superficial cICH.
Patients And Methods: Brain MRI scans from consecutive non-traumatic cICH patients admitted to a referral center were analyzed for cSVD markers.
AJNR Am J Neuroradiol
January 2025
From the Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China.
Background And Purpose: Differentiating Parkinson's Disease (PD) from Atypical Parkinsonism Syndrome (APS), including Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP), is challenging, and there is no gold standard. Integrating quantitative susceptibility mapping (QSM) and morphometry can help differentiate PD from APS and improve the internal diagnosis of APS.
Materials And Methods: In this retrospective study, we enrolled 55 patients with PD, 17 with MSA-parkinsonian type (MSA-P), 15 with MSA-cerebellar type (MSA-C), and 14 with PSP.
Front Neurol
January 2025
Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.
Introduction: The brainstem vestibular nuclei neurons receive synaptic inputs from inner ear acceleration-sensing hair cells, cerebellar output neurons, and ascending signals from spinal proprioceptive-related neurons. The lateral (LVST) and medial (MVST) vestibulospinal (VS) tracts convey their coded signals to the spinal circuits to rapidly counter externally imposed perturbations to facilitate stability and provide a framework for self-generated head movements.
Methods: The present study describes the morphological characteristics of intraaxonally recorded and labeled VS neurons monosynaptically connected to the 8th nerve.
The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay.
View Article and Find Full Text PDFCerebellum
January 2025
Institute of Cognitive Science Marc Jeannerod, CNRS/UMR 5229, 69500, Bron, France.
While the cerebellum's role in orchestrating motor execution and routines is well established, its functional role in supporting cognition is less clear. Previous studies claim that motricity and cognition are mapped in different areas of the cerebellar cortex, with an anterior/posterior dichotomy. However, most of the studies supporting this claim either use correlational methods (neuroimaging) or are lesion studies that did not consider central covariates (such as age, gender, treatment presence, and deep nuclei impairment) known to influence motor and cognitive recoveries in patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!