AI Article Synopsis

  • * This study investigates fucoxanthin's spectroscopic properties in methanol using femtosecond pump-probe measurements, focusing on absorption and emission behaviors in the near-infrared region.
  • * The findings reveal that the intensity of stimulated emission in the S1/ICT state increases with lower excitation energy, indicating that fucoxanthin's structure related to lower energy absorption has a stronger intramolecular charge transfer character.

Article Abstract

Fucoxanthin, containing a carbonyl group in conjugation with its polyene backbone, is a naturally occurring pigment in marine organisms and is essential to the photosynthetic light-harvesting function in brown alga and diatom. Fucoxanthin exhibits optical characteristics attributed to an intramolecular charge transfer (ICT) state that arises in polar environments due to the presence of the carbonyl group. In this study, we report the spectroscopic properties of fucoxanthin in methanol (polar and protic solvent) observed by femtosecond pump-probe measurements in the near-infrared region, where transient absorption associated with the optically allowed S2 (1(1)B u (+) ) state and stimulated emission from the strongly coupled S1/ICT state were observed following one-photon excitation to the S2 state. The results showed that the amplitude of the stimulated emission of the S1/ICT state increased with decreasing excitation energy, demonstrating that the fucoxanthin form associated with the lower energy of the steady-state absorption exhibits stronger ICT character.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-014-9995-6DOI Listing

Publication Analysis

Top Keywords

femtosecond pump-probe
8
carbonyl group
8
stimulated emission
8
s1/ict state
8
state
6
fucoxanthin
5
characterization intramolecular
4
intramolecular transfer
4
transfer state
4
state marine
4

Similar Publications

The femtosecond pump-probe technique, i.e. the transient transmission spectroscopy, has been used for the first time, to detect the vibrational spectra of symmetric fundamentals ν and ν in bromoform and chloroform.

View Article and Find Full Text PDF

Optical logic gates based on nonlinear optical property of material with ultrafast response speed and excellent computational processing power can break the performance bottleneck of electronic transistors. As one of the layered 2D materials, TaNiS exhibits high anisotropic mobility, exotic electrical response, and intriguing optical properties. Due to the low-symmetrical crystal structures, it possesses in-plane anisotropic physical properties.

View Article and Find Full Text PDF

Pulse shaping has long been employed for tailoring femtosecond laser pulses to study and control the fragmentation of polyatomic molecules. In many cases, a physical explanation connecting the properties of the field to the observed control is difficult to ascertain. We utilized 80 bit binary spectral phase functions to parametrize and map the search space, gaining insight into which pulse parameters most impact the ion yield and fragmentation pattern for the relatively large triethylamine [N(CH)] molecule.

View Article and Find Full Text PDF

Optical excitation and detection of high-frequency Sezawa modes in Si/SiO system decorated with NiFe nanodot arrays.

Ultrasonics

November 2024

Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India. Electronic address:

Surface acoustic waves have emerged as one of the potential candidates for the development of next-generation wave-based information and computing technologies. For practical devices, it is essential to develop the excitation techniques for different types of surface acoustic waves, especially at higher microwave frequencies, and to tailor their frequency versus wave vector characteristics. We show that this can be done by using ultrashort laser pulses incident on the surface of a multilayer decorated with a periodic array of metallic nanodots.

View Article and Find Full Text PDF

We present femtosecond pump-probe measurements of neutral and charged exciton optical response in monolayer MoSe to resonant photoexcitation of a given exciton state in the presence of 2D electron gas. We show that creation of charged exciton (X) population in a given K, K valley requires the capture of available free carriers in the opposite valley and reduces the interaction of neutral exciton (X) with the electron Fermi sea. We also observe spectral broadening of the X transition line with the increasing X population caused by efficient scattering and excitation induced dephasing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!