Forkhead box M1 (FoxM1) transcription factor is related to the pathogenesis of various malignancies and recent evidence indicates that FoxM1 promotes epithelial-mesenchymal transition (EMT) in breast cancer. Metformin can inhibit the progression of cancer. However, whether FoxM1 plays a role in EMT in prostate cancer (PCa) and whether metformin can suppress EMT through FoxM1 in PCa remain unresolved issues. In this study, we investigated the expression levels of the FoxM1 protein in 62 PCa and 39 benign prostate hyperplasia (BPH) samples and found that the expression levels of FoxM1 were higher in the PCa tissues (66.1%) compared with the BPH tissues (28.2%) (p<0.05). We observed that FoxM1 was expressed in the PCa cell lines and that metformin suppressed cell proliferation and the expression of FoxM1. We induced EMT in the PCa cells by the addition of transforming growth factor (TGF)-β1 and verified the process by examining EMT-related gene (E-cadherin, vimentin and Slug) expression. In addition, the knockdown of FoxM1 by shRNA in the PCa cells reversed EMT and markedly reduced cell migration. These results indicate that metformin suppresses EMT by inhibiting FoxM1. We demonstrate that the suppression of FoxM1 may be an effective therapeutic strategy for PCa and provide further evidence of the anticancer effects of metformin.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2014.1707DOI Listing

Publication Analysis

Top Keywords

emt prostate
8
prostate cancer
8
expression levels
8
levels foxm1
8
foxm1
6
increased foxm1
4
foxm1 expression
4
expression target
4
target metformin
4
metformin suppression
4

Similar Publications

Silencing of STEAP3 suppresses cervical cancer cell proliferation and migration via JAK/STAT3 signaling pathway.

Cancer Metab

December 2024

Department of Obstetrics and Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China.

Article Synopsis
  • STEAP3 is a critical protein associated with cervical cancer (CC) progression, showing strong expression in CC tissues and linked to poor patient prognosis.
  • The study employed various methods, such as immunohistochemistry and RNA sequencing, to investigate STEAP3's role, revealing that lower methylation levels of STEAP3 are connected to worse outcomes.
  • Knockdown of STEAP3 in CC cells reduced their growth and invasion abilities while enhancing drug sensitivity, suggesting STEAP3 drives cancer cell activity through the activation of the JAK/STAT3 signaling pathway.
View Article and Find Full Text PDF

Background And Objective: Prostate cancer is a major cause of cancer-related morbidity and mortality in men globally. The pathogenesis involves complex interactions between genetic mutations and environmental factors, activating multiple signaling pathways, especially Wnt/β-catenin, PI3K/Akt, and NF-κB pathways. Tumor suppressor genes and are key inhibitors of these pathways, crucial in suppressing tumor growth and metastasis.

View Article and Find Full Text PDF

Striatin-interacting protein 2 (STRIP2), encoded by the STRIP2 gene, plays a critical role in various biological processes. It is an integral part of the striatin-interacting phosphatase and kinase (STRIPAK) complex and is involved in cell growth, proliferation, migration, and differentiation. In this review, we explored the multifaceted functions of STRIP2 across different cancers, including non-small cell lung cancer (NSCLC), breast cancer, colorectal cancer, prostate cancer, and others.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to identify errors in transrectal ultrasound (TRUS)-based reconstructions for high-dose-rate brachytherapy in prostate cancer, using an electromagnetic tracking (EMT) system to enhance accuracy during treatment.
  • - Out of 265 evaluated needle reconstructions, 23% had minor errors or worse, with 9% classified as major or severe, primarily due to issues like incorrect needle placement and user errors.
  • - The findings indicate that one-quarter of the reconstructions had errors exceeding 2mm, highlighting the potential of EMT to help detect and prevent these mistakes, improving patient care without affecting the clinical process.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!