Iterative reconstruction techniques for coronary CT angiography have been introduced as an alternative for traditional filter back projection (FBP) to reduce image noise, allowing improved image quality and a potential for dose reduction. However, the impact of iterative reconstruction on the coronary artery calcium score is not fully known. In 112 consecutive stable patients with suspected coronary artery disease, the coronary calcium scores were assessed. Comparisons were made between the Agatston, volume and mass scores obtained with traditional FBP, and by using adaptive statistical iterative reconstruction (ASIR). A significant reduction of the Agatston score, volume score and mass score was observed for ASIR when compared to FBP, with median differences of resp. 26, 5 mm(3) and 1 mg. Using the ASIR reconstruction, the number of patients with a calcium score of zero increased by 13 %. Iterative CT reconstruction significantly reduces the Agatston, volume and mass scores. Since the calcium score is used as a prognostic tool for coronary artery disease, caution must be taken when using iterative reconstruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10554-014-0409-9 | DOI Listing |
Br J Radiol
January 2025
Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta Western Road, Xi'an, Shannxi, 710061.
Purpose: To explore the effect of different reconstruction algorithms (ASIR-V and DLIR) on image quality and emphysema quantification in chronic obstructive pulmonary disease (COPD) patients under ultra-low-dose scanning conditions.
Materials And Methods: This prospective study with patient consent included 62 COPD patients. Patients were examined by pulmonary function test (PFT), standard-dose CT (SDCT) and ultra-low-dose CT (ULDCT).
Molecules
January 2025
Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
Direct methods based on iterative projection algorithms can determine protein crystal structures directly from X-ray diffraction data without prior structural information. However, traditional direct methods often converge to local minima during electron density iteration, leading to reconstruction failure. Here, we present an enhanced direct method incorporating genetic algorithms for electron density modification in real space.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
January 2025
Peachtree Orthopaedic Clinic, Atlanta, GA, USA.
Background: The treatment of patients who suffer a proximal humeral fracture (PHF) remains controversial. The purpose of this study was to find consensus among experts using a validated iterative process in the treatment of patients after a PHF.
Methods: The Neer Circle is an organization of shoulder experts recognized for their service to the American Shoulder and Elbow Surgeons.
Bioengineering (Basel)
January 2025
The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
The WHO grading of pancreatic neuroendocrine neoplasms (PanNENs) is essential in patient management and an independent prognostic factor for patient survival. Radiomics features from CE-CT images hold promise for the outcome and tumor grade prediction. However, variations in reconstruction parameters can impact the predictive value of radiomics.
View Article and Find Full Text PDFPhotoacoustics
February 2025
School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China.
Photoacoustic tomography (PAT) enables non-invasive cross-sectional imaging of biological tissues, but it fails to map the spatial variation of speed-of-sound (SOS) within tissues. While SOS is intimately linked to density and elastic modulus of tissues, the imaging of SOS distribution serves as a complementary imaging modality to PAT. Moreover, an accurate SOS map can be leveraged to correct for PAT image degradation arising from acoustic heterogeneities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!