Efficiently obtaining full-length cDNA for a target gene is the key step for functional studies and probing genetic variations. However, almost all sequenced domestic animal genomes are not 'finished'. Many functionally important genes are located in these gapped regions. It can be difficult to obtain full-length cDNA for which only partial amino acid/EST sequences exist. In this study we report a general pipeline to obtain full-length cDNA, and illustrate this approach for one important gene (Ovocleidin-17, OC-17) that is associated with chicken eggshell biomineralization. Chicken OC-17 is one of the best candidates to control and regulate the deposition of calcium carbonate in the calcified eggshell layer. OC-17 protein has been purified, sequenced, and has had its three-dimensional structure solved. However, researchers still cannot conduct OC-17 mRNA related studies because the mRNA sequence is unknown and the gene is absent from the current chicken genome. We used RNA-Seq to obtain the entire transcriptome of the adult hen uterus, and then conducted de novo transcriptome assembling with bioinformatics analysis to obtain candidate OC-17 transcripts. Based on this sequence, we used RACE and PCR cloning methods to successfully obtain the full-length OC-17 cDNA. Temporal and spatial OC-17 mRNA expression analyses were also performed to demonstrate that OC-17 is predominantly expressed in the adult hen uterus during the laying cycle and barely at immature developmental stages. Differential uterine expression of OC-17 was observed in hens laying eggs with weak versus strong eggshell, confirming its important role in the regulation of eggshell mineralization and providing a new tool for genetic selection for eggshell quality parameters. This study is the first one to report the full-length OC-17 cDNA sequence, and builds a foundation for OC-17 mRNA related studies. We provide a general method for biologists experiencing difficulty in obtaining candidate gene full-length cDNA sequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968166 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093452 | PLOS |
STAR Protoc
January 2025
Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA. Electronic address:
Single-cell RNA sequencing (scRNA-seq) enables detailed characterization of cell states but often lacks insights into tissue clonal structures. Here, we present a protocol to probe cell states and clonal information simultaneously by enriching mitochondrial DNA (mtDNA) variants from 3'-barcoded full-length cDNA. We describe steps for input library preparation, mtDNA enrichment, PCR product cleanup, and paired-end sequencing.
View Article and Find Full Text PDFPLoS One
January 2025
PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France.
Local co-circulation of multiple phylogenetic lineages is particularly likely for rapidly evolving pathogens in the current context of globalisation. When different phylogenetic lineages co-occur in the same fields, they may be simultaneously present in the same host plant (i.e.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Computer Science, School of Computing and Data Science, University of Hong Kong, Hong Kong, China.
Variant calling using long-read RNA sequencing (lrRNA-seq) can be applied to diverse tasks, such as capturing full-length isoforms and gene expression profiling. It poses challenges, however, due to higher error rates than DNA data, the complexities of transcript diversity, RNA editing events, etc. In this paper, we propose Clair3-RNA, the first deep learning-based variant caller tailored for lrRNA-seq data.
View Article and Find Full Text PDFGene
March 2025
Crop Research Institute, Gansu Academy of Agriculture Sciences, Lanzhou 730070, China.
Some winter rapeseed (Brassica rapa) varieties can endure extremely low temperatures (-20°C to -32°C). However, because of a lack of mutant resources, the molecular mechanisms underlying cold tolerance in B. rapa remain unclear.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
is an interferon-stimulated gene (ISG) that plays an important role in the congenital antiviral immunity of vertebrates. In this study, the common carp () gene is characterized, and we determine whether it has the ability to inhibit spring viremia of carp virus (SVCV) replication in EPC cells. The results showed that the full-length cDNA of the gene was 1044 bp and it encoded 348 amino acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!