Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inadequate maintenance of systemic blood flow in neonates following preterm birth is associated with increased morbidity and mortality, and may be due in part to structural immaturity of the myocardium. Maternal glucocorticoid administration is associated with improved cardiovascular function, and possibly promotes structural maturation of the myocardium. This study assessed the structural maturity of the myocardium in male and female preterm and term piglets, and preterm piglets exposed to a regimen of maternal glucocorticoids as used clinically. In preterm, term and glucocorticoid exposed preterm piglets cardiomyocyte maturity was examined by measuring the proportion of binucleated myocytes and the volumes of single living ventricular cardiomyocytes with fluorescence microscopy. Ventricular apoptosis and proliferation were measured by immunohistochemistry. Preterm piglet hearts had fewer binucleated myocytes, smaller myocytes, and more proliferative and fewer apoptotic nuclei than term hearts. Maternal glucocorticoid treatment resulted in increased binucleation with no increase in myocyte volume, and levels of proliferation and apoptosis that were more similar to the term heart. Atrial weights were increased and in female piglets there was an increase in the ratio of left to right ventricular weight. The observed changes in atrial mass and myocyte structural maturation correlated with changes in cardiac function of isolated hearts of littermates. In conclusion, the association between increased myocardial maturation following glucocorticoid exposure, improved cardiac function in littermates, and clinical improvement in human neonatal cardiac function exposed to antenatal glucocorticoids, suggests that glucocorticoid exposure contributes to improved cardiovascular function in preterm infants by promoting myocardial structural maturity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968162 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093407 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!