Thin film solar cells with a Cu(In,Ga)Se2 (CIGS) absorber layer achieved efficiencies above 20%. In order to achieve such high performance the absorber layer of the device has to be doped with alkaline material. One possibility to incorporate alkaline material is a post deposition treatment (PDT), where a thin layer of NaF and/or KF is deposited onto the completely grown CIGS layer. In this paper we discuss the effects of PDT with different alkaline elements (Na and K) on the electronic properties of CIGS solar cells. We demonstrate that whereas Na is more effective in increasing the hole concentration in CIGS, K significantly improves the pn-junction quality. The beneficial role of K in improving the PV performance is attributed to reduced recombination at the CdS/CIGS interface, as revealed by temperature dependent J-V measurements, due to a stronger electronically inverted CIGS surface region. Computer simulations with the software SCAPS are used to verify this model. Furthermore, we show that PDT with either KF or NaF has also a distinct influence on other electronic properties of the device such as the position of the N1 signal in admittance spectroscopy and the roll-over of the J-V curve at low temperature. In view of the presented results we conclude that a model based on a secondary diode at the CIGS/Mo interface can best explain these features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp00614c | DOI Listing |
Biomed Pharmacother
December 2024
Structural Biology Laboratory, Oswaldo Cruz Institution, Fiocruz, Rio de Janeiro, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Oswaldo Cruz Institution, Fiocruz, Rio de Janeiro, Brazil. Electronic address:
Trichomoniasis, a globally prevalent sexually transmitted infection caused by Trichomonas vaginalis, affects approximately 278 million people each year. It presents a challenge due to resistance to the current treatment, Metronidazole (MTZ), which is also associated with side effects. Cannabis sativa, with more than 100 phytocannabinoids and numerous studies for therapeutic applications, including parasitic infections, has undergone a significant shift in acceptance worldwide, highlighted by legalizations and substantial revenue projections.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
IFIMUP Physics for Advanced Materials, Nanotechnology and Photonics, Department of Physics and Astronomy, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal.
In recent advancements within sensing technology, driven by the Internet of Things (IoT), significant impacts are observed on health sector applications, notably through wearable electronics like electronic tattoos (e-tattoos). These e-tattoos, designed for direct contact with the skin, facilitate precise monitoring of vital physiological parameters, including body heat, a critical indicator for conditions such as inflammation and infection. Monitoring these indicators can be crucial for early detection of chronic conditions, steering toward proactive healthcare management.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China.
Nanoscale metals have emerged as crucial materials for conductive inks in printed electronics due to their unique physical and chemical properties. However, the synthesis of high-precision and highly conductive copper ink remains a challenge. Herein, a high-precision, highly conductive, and oxidation-resistant nanocopper ink was synthesized to fabricate highly conductive and flexible printed electronic devices.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
Achieving high shielding effectiveness in electromagnetic shielding materials relies heavily on high conductivity, yet simultaneously enhancing the absorption loss remains a persistent challenge. Consequently, the study successfully creates efficient electromagnetic shielding composite films with a unique grape-like bunch structure of hollow nanosilver (HCAF) through layer-by-layer assembly. The utilization of poly(dopamine) (PDA) to anchor nanosilver granules (AgNPs) onto cellulose nanofibers (CNF) results in the formation of CNF@PDA@AgNPs.
View Article and Find Full Text PDFSmall
December 2024
School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
Hydrogels present significant potential in flexible materials designed for electromagnetic interference (EMI) shielding, attributed to their soft, stretchable mechanical properties and water-rich porous structures. Unfortunately, EMI shielding hydrogels commonly suffer from low mechanical properties, deficient fracture energy, and low strength, which limit the serviceability of these materials in complex mechanical environments. In this study, the double network strategy is successfully utilized along with the Hofmeister effect to create MXene/PAA (polyacrylic acid)-CS (chitosan) hydrogels and further strengthen and toughen the gel with (NH)SO solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!