AI Article Synopsis

  • This protocol outlines how to prepare low-molecular-weight hydrogels (LMWGs) with adjustable gelation time and stiffness by varying the catalyst concentration during gel formation.
  • By changing the rate of gelator formation from benzaldehyde and trishydrazide, researchers can manipulate gelation kinetics from hours to minutes, achieving stiffness levels between 5-50 kPa.
  • The entire process, including precursor preparation and gel formation, operates at ambient temperatures and neutral to mildly acidic pH, and involves analysis techniques like critical gel concentration tests, rheology, and confocal laser-scanning microscopy.

Article Abstract

This protocol details the preparation of low-molecular-weight hydrogels (LMWGs) in which the gelation time and mechanical stiffness of the final gel can be tuned with the concentration of the catalyst used in the in situ formation of the hydrogelator. By altering the rate of formation of the hydrazone-based gelator from two water-soluble compounds--an oligoethylene functionalized benzaldehyde and a cyclohexane-derived trishydrazide--in the presence of acid or aniline as catalyst, the kinetics of gelation can be tuned from hours to minutes. The resulting materials display controllable stiffness in the 5-50 kPa range. This protocol works at ambient temperatures in water, at either neutral or moderately acidic pH (phosphate buffer, pH 5) depending on the catalyst used. The hydrazide and aldehyde precursors take a total of 5 d to prepare. The final gel is prepared by mixing aqueous solutions of the two precursors and can take between minutes and hours to set, depending on the catalytic conditions. We also describe analysis of the hydrogels by critical gel concentration (CGC) tests, rheology and confocal laser-scanning microscopy (CLSM).

Download full-text PDF

Source
http://dx.doi.org/10.1038/nprot.2014.055DOI Listing

Publication Analysis

Top Keywords

gelation time
8
low-molecular-weight hydrogels
8
final gel
8
variable gelation
4
time stiffness
4
stiffness low-molecular-weight
4
hydrogels catalytic
4
catalytic control
4
control self-assembly
4
self-assembly protocol
4

Similar Publications

The remediation of oil-contaminated soil poses significant environmental challenges, often necessitating innovative approaches for effective and sustainable solutions. This study focuses on the synthesis, characterisation, and application of biodegradable capsules loaded with surfactant for enhanced oil remediation of a clean sand. By controlling the release properties of capsules, the research aims to overcome the limitations of conventional surfactant-based remediation methods, such as rapid washout and reduced efficacy over time.

View Article and Find Full Text PDF

This study presents a numerical model for incipient fibrin-clot formation that captures characteristic rheological and microstructural features of the clot at the gel point. Using a mesoscale-clustering framework, we evaluate the effect of gel concentration or gel volume fraction and branching on the fractal dimension, the gel time, and the viscoelastic properties of the clots. We show that variations in the gel concentration of our model can reproduce the effect of thrombin in the formation of fibrin clots.

View Article and Find Full Text PDF

Self-assembly of amino acids and short-peptide derivatives attracted significant curiosity worldwide due to their unique self-assembly process and wide variety of applications. Amino acid is considered one of the important synthons in supramolecular chemistry. Self-assembly processes and applications of unfunctionalized native amino acids have been less reported in the literature.

View Article and Find Full Text PDF

Optimizing gelation time for cell shape control through active learning.

Soft Matter

January 2025

Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06510, USA.

Hydrogels are popular platforms for cell encapsulation in biomedicine and tissue engineering due to their soft, porous structures, high water content, and excellent tunability. Recent studies highlight that the timing of network formation can be just as important as mechanical properties in influencing cell morphologies. Conventionally, time-dependent properties can be achieved through multi-step processes.

View Article and Find Full Text PDF

This study aims to utilize secondary aluminum dross waste to synthesize Fe-Al layered double hydroxide (Fe-Al LDH) for efficient adsorption of arsenic from drinking water. The synthesis process was based on a multi-step hydrometallurgical approach, in which the aluminum content in the waste was first converted to sodium aluminate. This was followed by the transformation into Fe-Al LDH through a series of processes, including gelation, sol formation, simultaneous precipitation, and aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!