Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aim: MicroRNAs (miRNAs) play key roles in inflammatory responses of macrophages. However, the function of miRNAs in macrophage-derived foam cell formation is unclear. Here, we investigated the role of miRNAs in macrophage-derived foam cell formation and atherosclerotic development.
Methods And Results: Using quantitative reverse transcription-PCR (qRT-PCR), we found that the level of miR-155 expression was increased significantly in both plasma and macrophages from atherosclerosis (ApoE(-/-)) mice. We identified that oxidized low density lipoprotein (oxLDL) induced the expression and release of miR-155 in macrophages, and that miR-155 was required to mediate oxLDL-induced lipid uptake and reactive oxygen species (ROS) production of macrophages. Furthermore, ectopic overexpression and knockdown experiments identified that HMG box-transcription protein1 (HBP1) is a novel target of miR-155. Knockdown of HBP1 enhanced lipid uptake and ROS production in oxLDL-stimulated macrophages, and overexpression of HBP1 repressed these effects. Furthermore, bioinformatics analysis identified three YY1 binding sites in the promoter region of pri-miR-155 and verified YY1 binding directly to its promoter region. Detailed analysis showed that the YY1/HDAC2/4 complex negatively regulated the expression of miR-155 to suppress oxLDL-induced foam cell formation. Importantly, inhibition of miR-155 by a systemically delivered antagomiR-155 decreased clearly lipid-loading in macrophages and reduced atherosclerotic plaques in ApoE(-/-) mice. Moreover, we observed that the level of miR-155 expression was up-regulated in CD14(+) monocytes from patients with coronary heart disease.
Conclusion: Our findings reveal a new regulatory pathway of YY1/HDACs/miR-155/HBP1 in macrophage-derived foam cell formation during early atherogenesis and suggest that miR-155 is a potential therapeutic target for atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cvr/cvu070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!