Nicotinic acid activates the capsaicin receptor TRPV1: Potential mechanism for cutaneous flushing.

Arterioscler Thromb Vasc Biol

From the Department of Physiology and Membrane Biology (L.M., B.H.L., J.Z.) and Division of Cardiovascular Medicine (H.C., S.S.), University of California School of Medicine, Davis; Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province, China (R.M, A.C., Y.J., L.X.); and Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia (L.M.).

Published: June 2014

Objective: Nicotinic acid (also known as niacin or vitamin B3), widely used to treat dyslipidemias, represents an effective and safe means to reduce the risk of mortality from cardiovascular disease. Nonetheless, a substantial fraction of patients discontinue treatment because of a strong side effect of cutaneous vasodilation, commonly termed flushing. In the present study, we tested the hypothesis that nicotinic acid causes flushing partially by activating the capsaicin receptor TRPV1, a polymodal cellular sensor that mediates the flushing response on consumption of spicy food.

Approach And Results: We observed that the nicotinic acid-induced increase in blood flow was substantially reduced in Trpv1(-/-) knockout mice, indicating involvement of the channel in flushing response. Using exogenously expressed TRPV1, we confirmed that nicotinic acid at submillimolar to millimolar concentrations directly and potently activates TRPV1 from the intracellular side. Binding of nicotinic acid to TRPV1 lowers its activation threshold for heat, causing channel opening at physiological temperatures. The activation of TRPV1 by voltage or ligands (capsaicin and 2-aminoethoxydiphenyl borate) is also potentiated by nicotinic acid. We further demonstrated that nicotinic acid does not compete directly with capsaicin but may activate TRPV1 through the 2-aminoethoxydiphenyl borate activation pathway. Using live-cell fluorescence imaging, we observed that nicotinic acid can quickly enter the cell through a transporter-mediated pathway to activate TRPV1.

Conclusions: Direct activation of TRPV1 by nicotinic acid may lead to cutaneous vasodilation that contributes to flushing, suggesting a potential novel pathway to inhibit flushing and to improve compliance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063526PMC
http://dx.doi.org/10.1161/ATVBAHA.113.303346DOI Listing

Publication Analysis

Top Keywords

nicotinic acid
36
nicotinic
10
capsaicin receptor
8
trpv1
8
receptor trpv1
8
acid
8
cutaneous vasodilation
8
flushing response
8
observed nicotinic
8
activation trpv1
8

Similar Publications

What Is Already Known About This Topic?: Previous surveillance data from 2015-2017 showed that Chinese adults aged 18 to 59 years had mean daily vitamin intakes of 406.8 μg retinol equivalent (RE) for vitamin A, 36.7 mg for vitamin E, 0.

View Article and Find Full Text PDF

Combined action of dietary-based approaches and therapeutic agents on cholesterol metabolism and main related diseases.

Clin Nutr ESPEN

January 2025

Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal. Electronic address:

Background: Dyslipidaemia is among the major causes of severe diseases and, despite being well-established, the hypocholesterolaemic therapies still face significant concerns about potential side effects (such as myopathy, myalgia, liver injury digestive problems, or mental fuzziness in some people taking statins), interaction with other drugs or specific foods. Accordingly, this review describes the latest developments in the most effective therapies to control and regulate dyslipidaemia.

Scope And Approach: Herein, the metabolic dynamics of cholesterol and their integration with the current therapies: statins, bile acid sequestrants, fibrates, niacin, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, reconstituted high-density lipoprotein (rHDL), or anti-inflammatory and immune-modulating therapies), were compared focusing their effectiveness, patients' adhesion and typical side-effects.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how metabolic profiles change in patients with patent foramen ovale (PFO) and migraines before and after surgery, using metabolomics techniques.
  • Significant differences in metabolites like linoleic acid and quinolinic acid were observed after surgery, indicating potential diagnostic markers for these patients.
  • The research highlights the importance of metabolic pathways related to inflammation and oxidative stress in understanding migraines associated with PFO.
View Article and Find Full Text PDF

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

Assessing the Nutrient Composition of a Carnivore Diet: A Case Study Model.

Nutrients

December 2024

Human Potential Centre, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0632, New Zealand.

Background/objectives: The rise in chronic metabolic diseases has led to the exploration of alternative diets. The carnivore diet, consisting exclusively of animal products, has gained attention, anecdotally, for imparting benefit for inflammatory conditions beyond that possible by other restrictive dietary approaches. The aim was to assess the micronutrient adequacy of four versions of the carnivore diet against national nutrient reference values (NRVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!