A large number of parameters are acquired during practical water quality monitoring. If all the parameters are used in water quality assessment, the computational complexity will definitely increase. In order to reduce the input space dimensions, a fuzzy rough set was introduced to perform attribute reduction. Then, an attribute recognition theoretical model and entropy method were combined to assess water quality in the Harbin reach of the Songhuajiang River in China. A dataset consisting of ten parameters was collected from January to October in 2012. Fuzzy rough set was applied to reduce the ten parameters to four parameters: BOD5, NH3-N, TP, and F. coli (Reduct A). Considering that DO is a usual parameter in water quality assessment, another reduct, including DO, BOD5, NH3-N, TP, TN, F, and F. coli (Reduct B), was obtained. The assessment results of Reduct B show a good consistency with those of Reduct A, and this means that DO is not always necessary to assess water quality. The results with attribute reduction are not exactly the same as those without attribute reduction, which can be attributed to the α value decided by subjective experience. The assessment results gained by the fuzzy rough set obviously reduce computational complexity, and are acceptable and reliable. The model proposed in this paper enhances the water quality assessment system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4025034 | PMC |
http://dx.doi.org/10.3390/ijerph110403507 | DOI Listing |
Water Res
January 2025
Hull International Fisheries Institute, School of Natural Sciences, University of Hull, Hull, UK.
Globally, fish have been severely affected by the widespread, chronic degradation of fresh waters, with a substantial proportion of species declining in abundance or range in recent decades. This has especially been the case in densely populated countries with an industrial heritage and intensive agriculture, where the majority of river catchments have been affected by deteriorations in water quality and changes in land use. This study used a spatially and temporally extensive dataset, encompassing 16,124 surveys at 1180 sites representing a wide range of river typologies and pressures, to examine changes in the fish populations of England's rivers over four decades (1980s-2010s).
View Article and Find Full Text PDFAnn N Y Acad Sci
January 2025
Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, Germany.
Vegetation is often viewed as a consequence of long-term climate conditions. However, vegetation itself plays a fundamental role in shaping Earth's climate by regulating the energy, water, and biogeochemical cycles across terrestrial landscapes. It exerts influence by consuming water resources through transpiration and interception, lowering atmospheric CO concentration, altering surface roughness, and controlling net radiation and its partitioning into sensible and latent heat fluxes.
View Article and Find Full Text PDFNeuroradiology
January 2025
Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, Villarroel 170, 08036, Barcelona, Spain.
Purpose: Fluid exchanges between perivascular spaces (PVS) and interstitium may contribute to the pathophysiology of small vessel disease (SVD). We aimed to analyze water diffusivity measures and their relationship with PVS and other SVD imaging markers.
Methods: We enrolled 50 consecutive patients with a recent small subcortical infarct.
Toxics
January 2025
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ) is an emerging chlorinated disinfection byproduct (DBP) in bodies of water. However, this compound poses an unknown toxic effect on cyanobacteria. In this study, the toxicological mechanisms of 2,6-DCBQ in () were investigated through physiological and nontargeted metabolomic assessments.
View Article and Find Full Text PDFToxics
January 2025
Key Laboratory of Feed Biotechnology, the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100081, China.
Hypochlorous acid has been attempted as an additive to animal drinking water in practical animal farming processes for water microbial quality control. Despite its potential, there is still a knowledge gap concerning the effects of hypochlorous acid on both poultry growth performance and gut microbial load. To address this gap, an animal study was conducted using flow cytometry to quantify the age-related microbial load in broiler manure and gut contents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!