AI Article Synopsis

  • Organophosphates are toxic agents that lead to serious cholinergic symptoms, and existing treatments are not effective enough, highlighting the need for new antidotes.
  • A new recombinant antibody fragment called WZ1-14.2.1 was developed using a unique selection method and shows similar catalytic activity to butyrylcholinesterase.
  • The WZ1-14.2.1 has robust enzyme activity against certain substrates and can resist various acetylcholinesterase inhibitors but is affected by specific inhibitors, and its 3D structure suggests functionality consistent with its enzymatic results.

Article Abstract

Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1-14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1-14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1-14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1-14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4171011PMC
http://dx.doi.org/10.4161/mabs.28635DOI Listing

Publication Analysis

Top Keywords

single-chain variable
8
variable fragment
8
catalytic activity
8
selection human
4
human butyrylcholinesterase-like
4
butyrylcholinesterase-like antibody
4
antibody single-chain
4
fragment resistant
4
resistant ache
4
ache inhibitors
4

Similar Publications

Background: The adoptive cell transfer (ACT) of T cell receptor (TCR)-engineered T cells targeting the HLA-A2-restricted epitope NY-ESO-1 (A2/NY) has yielded important clinical responses against several cancers. A variety of approaches are being taken to augment tumor control by ACT including TCR affinity-optimization and T-cell coengineering strategies to address the suppressive tumor microenvironment (TME). Most TCRs of clinical interest are evaluated in immunocompromised mice to enable human T-cell engraftment and do not recapitulate the dynamic interplay that occurs with endogenous immunity in a treated patient.

View Article and Find Full Text PDF

The hERG1 potassium channel conducts the cardiac repolarizing current, IKr. hERG1 has emerged as a therapeutic target for cardiac diseases marked by prolonged actional potential duration (APD). Unfortunately, many hERG1 activators display off-target and proarrhythmic effects that limit their therapeutic potential.

View Article and Find Full Text PDF

Trophoblast cell-surface antigen 2 (TROP 2) has re-emerged as a promising biomarker in triple-negative breast cancer (TNBC), with high overexpression in many TNBC cases. However, despite its potential and approval as an antibody-drug-conjugate for TNBC treatment, TROP 2-targeted delivery systems are currently underexplored. Therefore, this study was aimed at exploiting the potential of TROP 2 targeting by encapsulating metformin (Met), an antidiabetic drug associated with tumor growth inhibitory properties, inside liposomes decorated with TROP 2-targeting single-chain variable fragments (scFvs).

View Article and Find Full Text PDF

Isolation and Characterization of Antibodies Against Vascular Cell Adhesion Molecule-1 Reveals Putative Role for Ig-like Domains 2 and 3 in Cell-to-Cell Interaction.

Int J Mol Sci

December 2024

ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.

The vascular cell adhesion molecule-1 (VCAM-1) plays an important role in inflammation, where it facilitates the recruitment of leukocytes to the inflamed area via leukocytes' VLA-4 and endothelial cells' VCAM-1 interaction. VCAM-1 expression is also upregulated in certain cancers. VCAM-1 has seven Ig-like domains, with domains 1 and 4 shown to be critical for VLA-4 binding.

View Article and Find Full Text PDF

Monoclonal antibodies enhance innate immunity, while bispecific T cell engager antibodies redirect adaptive T cell immunity. To stimulate both innate and adaptive mechanisms, we created a bifunctional eCD16A/anti-CD3-BFP adapter protein for combined use with clinically approved monoclonal IgG1 antibodies. The adaptor protein contains the extracellular domain of the human CD16A high-affinity variant, which binds the Fc domain of IgG1 antibodies, and an anti-human CD3 single-chain variable fragment that redirects T cell cytotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!