A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Muscle inactivity and activity patterns after sedentary time--targeted randomized controlled trial. | LitMetric

Muscle inactivity and activity patterns after sedentary time--targeted randomized controlled trial.

Med Sci Sports Exerc

1Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, FINLAND; 2Department of Sport Sciences, University of Jyväskylä, Jyväskylä, FINLAND; and 3Gerontology Research Center, Department of Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND.

Published: November 2014

Purpose: Interventions targeting sedentary time are needed. We used detailed EMG recordings to study the short-term effectiveness of simple sedentary time-targeted tailored counseling on the total physical activity spectrum.

Methods: This cluster randomized controlled trial was conducted between 2011 and 2013 (InPact, ISRCTN28668090), and short-term effectiveness of counseling is reported in the present study. A total of 133 office workers volunteered to participate, from which muscle activity data were analyzed from 48 (intervention, n = 24; control, n = 24). After a lecture, face-to-face tailored counseling was used to set contractually binding goals regarding breaking up sitting periods and increasing family based physical activity. Primary outcome measures were assessed 11.8 ± 1.1 h before and a maximum of 2 wk after counseling including quadriceps and hamstring muscle inactivity time, sum of the five longest muscle inactivity periods, and light muscle activity time during work, commute, and leisure time.

Results: Compared with those in the controls, counseling decreased the intervention group's muscle inactivity time by 32.6 ± 71.8 min from 69.1% ± 8.5% to 64.6% ± 10.9% (whole day, P < 0.05; work, P < 0.05; leisure, P < 0.05) and the sum of the five longest inactivity periods from 35.6 ± 14.8 to 29.7 ± 10.1 min (whole day, P < 0.05; leisure, P < 0.01). Concomitantly, light muscle activity time increased by 20.6 ± 52.6 min, from 22.2% ± 7.9% to 25.0% ± 9.7% (whole day, P < 0.05; work, P < 0.01; leisure, P < 0.05), and during work time, average EMG amplitude (percentage of EMG during maximal voluntary isometric contraction (MVC) (%EMG MVC)) increased from 1.6% ± 0.9% to 1.8% ± 1.0% (P < 0.05) in the intervention group compared with that in the controls.

Conclusions: A simple tailored counseling was able to reduce muscle inactivity time by 33 min, which was reallocated to 21 min of light muscle activity. During work time, average EMG amplitude increased by 13%, reaching an average of 1.8% of EMG MVC. If maintained, this observed short-term effect may have health-benefiting consequences.

Download full-text PDF

Source
http://dx.doi.org/10.1249/MSS.0000000000000335DOI Listing

Publication Analysis

Top Keywords

muscle inactivity
20
muscle activity
16
tailored counseling
12
inactivity time
12
light muscle
12
day 005
12
005 work
12
muscle
9
randomized controlled
8
controlled trial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!