Pathologic and imaging correlates of cognitive deficits in multiple sclerosis: changing the paradigm of diagnosis and prognosis.

Cogn Behav Neurol

Departments of *Neurology †Neuropsychology and Neuroradiology, Barrow Neurological Institute, Phoenix, AZ ‡Department of Neuroscience, Arizona State University, Phoenix, AZ.

Published: March 2014

From 1868, when Charcot first described the clinical features and the pathologic correlates, up till the present day, multiple sclerosis (MS) has commonly been characterized by the symptoms caused by inflammatory plaques in the white matter of the brain and spinal cord. Early use of magnetic resonance imaging (MRI) to diagnose MS focused on detecting these white matter lesions. By the 1990s, researchers recognized that many patients with MS have cognitive deficits that can cause severe disability, and also determined the associated pathology; these findings shed more light on both the pathogenesis and progression. Since 2004, several lines of evidence have shown that the extent of white matter plaques identified on MRI does not correlate well with cognitive deficits. High-resolution MRI and advances in immunohistochemical techniques have enabled detection of cortical demyelination early in the course, correlating with cognitive deficits. Late in the course, pathologic changes in normal-looking white and gray matter correlate more closely with progressive cognitive deficits than with visual, sensory, and motor symptoms. This finding implies the need to redefine the disease and its progression. In this review, we discuss the histopathologic studies of cortical plaques in MS and early indications about their role in disease definition and progression, describe the role of high-resolution MRI in staging and determining progression of cognitive symptoms, and discuss how advances in these areas are forcing us to rethink diagnosis and determination of progression.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNN.0000000000000023DOI Listing

Publication Analysis

Top Keywords

cognitive deficits
20
white matter
12
multiple sclerosis
8
high-resolution mri
8
cognitive
6
deficits
5
progression
5
pathologic imaging
4
imaging correlates
4
correlates cognitive
4

Similar Publications

GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Adv Sci (Weinh)

January 2025

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.

View Article and Find Full Text PDF

Postoperative delirium (POD), an acute cognitive dysfunction linked to morbidity and mortality, is characterized by memory impairments and disturbances in consciousness, particularly in patients aged 65 and older. Neuroinflammation and NAD+ imbalance are key mechanisms behind POD, leading to synaptic and cognitive deterioration. However, how surgery contributes to POD and neuroinflammation remains unclear, and effective treatments are lacking.

View Article and Find Full Text PDF

Diabetes-related cognitive impairment: Mechanisms, symptoms, and treatments.

Open Med (Wars)

January 2025

Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, No. 212 Daguan Road, Xishan District, Kunming, 650000, Yunnan, China.

Background: Diabetes-related cognitive impairment is increasingly recognized as a significant complication, profoundly impacting patients' quality of life. This review aims to examine the pathophysiological mechanisms, clinical manifestations, risk factors, assessment and diagnosis, management strategies, and future research directions of cognitive impairment in diabetes.

Methodology: A comprehensive literature search was conducted using PubMed, Medline, and other medical databases to identify, review, and evaluate published articles on cognitive impairment in diabetes.

View Article and Find Full Text PDF

Background: Depression, a widespread mental health issue, is often marked by impaired cognitive control, particularly in managing proactive and reactive processes. The Dual Mechanisms of Control (DMC) framework differentiates between these two modes of cognitive control: proactive control involves sustained goal maintenance, while reactive control is more stimulus-driven and transient. Stress, known to exacerbate cognitive dysfunction in depression, may influence the balance between these control processes, though the specific effects remain poorly understood.

View Article and Find Full Text PDF

Treatment with BRAF/MEK: inhibitors in mutant BRAF V600E papillary craniopharyngioma.

Endocr Oncol

January 2024

Department of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.

Summary: Craniopharyngiomas (CPs) are rare brain epithelial tumours arising in the suprasellar region, infiltrating adjacent areas causing visual loss, panhypopituitarism, cognitive deficits and morbid obesity. Papillary CPs (PCPs) harbour in 94% BRAF mutation cases. Two patients with PCP and BRAF V600E mutations but with different tumour status were treated with BRAF and MEK inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!