Wild yeast harbour a variety of distinct amyloid structures with strong prion-inducing capabilities.

Mol Microbiol

Department of Cell Biology and Physiology, Washington University, St Louis, MO, 63110, USA.

Published: April 2014

Variation in amyloid structures profoundly influences a wide array of pathological phenotypes in mammalian protein conformation disorders and dominantly inherited phenotypes in yeast. Here, we describe, for the first time, naturally occurring, self-propagating, structural variants of a prion protein isolated from wild strains of the yeast Saccharomyces cerevisiae. Variants of the [RNQ⁺] prion propagating in a variety of wild yeast differ biochemically, in their intracellular distributions, and in their ability to promote formation of the [PSI⁺] prion. [PSI⁺] is an epigenetic regulator of cellular phenotype and adaptability. Strikingly, we find that most natural [RNQ⁺] variants induced [PSI⁺] at high frequencies and the majority of [PSI⁺] variants elicited strong cellular phenotypes. We hypothesize that the presence of an efficient [RNQ⁺] template primes the cell for [PSI⁺] formation in order to induce [PSI⁺] in conditions where it would be advantageous. These studies utilize naturally occurring structural variants to expand our understanding of the consequences of diverse prion conformations on cellular phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4708258PMC
http://dx.doi.org/10.1111/mmi.12543DOI Listing

Publication Analysis

Top Keywords

wild yeast
8
amyloid structures
8
naturally occurring
8
structural variants
8
cellular phenotypes
8
[psi⁺]
6
variants
5
yeast harbour
4
harbour variety
4
variety distinct
4

Similar Publications

Oxford Nanopore Technologies provides multiplexing options for DNA and cDNA sequencing, but not for direct RNA sequencing. Here we describe a duplexing approach and validate it by simultaneously sequencing the rRNA from wild type and knockout that have differential rRNA modifications, successfully demultiplexing the data using bioinformatics approaches.

View Article and Find Full Text PDF

The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress.

View Article and Find Full Text PDF

Glutathione reductase (GR) maintains the cellular redox state by reducing oxidized glutathione to glutathione (GSH), which regulates antioxidant defense. Additionally, GR plays an essential role in photosynthesis; however, the mechanism by which GR regulates photosystem II (PSII) is largely unknown. We identified six, three, and three GR genes in Gossypium hirsutum, Gossypium arboreum, and Gossypium raimondii, respectively.

View Article and Find Full Text PDF

Bisphenol A, an endocrine-disrupting compound, is widely used in the industrial production of plastic products. Despite increasing concerns about its harmful effects on human health, animals, and the environment, the use of BPA has been banned only in infant products, and its effects on cellular processes are not fully understood. To investigate the impact of BPA on eukaryotic cells, we analyzed the proteome changes of wild-type and -deleted strains exposed to different doses of BPA using sample multiplexing-based proteomics.

View Article and Find Full Text PDF

Although the mitochondrial genome is an attribute of all eukaryotes, some yeast species (called petite-positive) can replicate without mitochondrial DNA (mtDNA). Strains without mtDNA (known as rho mutants or petite mutants) are respiration-deficient and require fermentable carbon sources (such as glucose) for their metabolism. However, they are compromised in many aspects of fitness and competitiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!