The Influence of an Obesogenic Diet on Oxysterol Metabolism in C57BL/6J Mice.

Cholesterol

Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.

Published: March 2014

Our current understanding of oxysterol metabolism during different disease states such as obesity and dyslipidemia is limited. Therefore, the aim of this study was to determine the effect of diet-induced obesity on the tissue distribution of various oxysterols and the mRNA expression of key enzymes involved in oxysterol metabolism. To induce obesity, male C57BL/6J mice were fed a high fat-cholesterol diet for 24 weeks. Following diet-induced obesity, plasma levels of 4 β -hydroxycholesterol, 5,6 α -epoxycholesterol, 5,6 β -epoxycholesterol, 7 α -hydroxycholesterol, 7 β -hydroxycholesterol, and 27-hydroxycholesterol were significantly (P < 0.05) increased. In the liver and adipose tissue of the obese mice, 4 β -hydroxycholesterol was significantly (P < 0.05) increased, whereas 27-hydroxycholesterol was increased only in the adipose tissue. No significant changes in either hepatic or adipose tissue mRNA expression were observed for oxysterol synthesizing enzymes 4 β -hydroxylase, 27-hydroxylase, or 7 α -hydroxylase. Hepatic mRNA expression of SULT2B1b, a key enzyme involved in oxysterol detoxification, was significantly (P < 0.05) elevated in the obese mice. Interestingly, the appearance of the large HDL1 lipoprotein was observed with increased oxysterol synthesis during obesity. In diet-induced obese mice, dietary intake and endogenous enzymatic synthesis of oxysterols could not account for the increased oxysterol levels, suggesting that nonenzymatic cholesterol oxidation pathways may be responsible for the changes in oxysterol metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941159PMC
http://dx.doi.org/10.1155/2014/843468DOI Listing

Publication Analysis

Top Keywords

oxysterol metabolism
16
mrna expression
12
adipose tissue
12
obese mice
12
oxysterol
8
c57bl/6j mice
8
diet-induced obesity
8
involved oxysterol
8
005 increased
8
increased oxysterol
8

Similar Publications

Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension.

Science

January 2025

Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.

Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 () deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes.

View Article and Find Full Text PDF

Acid sphingomyelinase deficiency (ASMD) is a rare, progressive lysosomal storage disorder resulting from a deficiency in acid sphingomyelinase, leading to sphingomyelin accumulation and multi-organ damage. ASMD presents a broad phenotypic spectrum with a continuum of severity, making it challenging to predict the phenotype in very young children and differentiate between acute and chronic neurovisceral disease. No disease-specific treatments existed for ASMD.

View Article and Find Full Text PDF

Oxysterols, as metabolites of cholesterol, play a key role in cholesterol homeostasis, autophagosome formation, and regulation of immune responses. Disorders in oxysterol metabolism are closely related to the pathogenesis of neurodegenerative diseases. To systematically investigate the profound molecular regulatory mechanisms of neurodegenerative diseases, it is necessary to quantify oxysterols and their metabolites in central and peripheral biospecimens simultaneously and accurately.

View Article and Find Full Text PDF

Cholesterol metabolites modulate ionotropic P2X4 and P2X7 receptor current in microglia cells.

Neuropharmacology

March 2025

Dept. of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy. Electronic address:

The central nervous system is a well-known steroidogenic tissue producing, among others, cholesterol metabolites such as neuroactive steroids, oxysterols and steroid hormones. It is well known that these endogenous molecules affect several receptor classes, including ionotropic GABAergic and NMDA glutamatergic receptors in neurons. It has been shown that also ionotropic purinergic (P2X) receptors are cholesterol metabolites' targets.

View Article and Find Full Text PDF

Dynamic interplay of autophagy and membrane repair during Mycobacterium tuberculosis Infection.

PLoS Pathog

January 2025

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland United States of America.

Autophagy plays a crucial role in the host response to Mycobacterium tuberculosis (Mtb) infection, yet the dynamics and regulation of autophagy induction on Mtb-containing vacuoles (MCVs) remain only partially understood. We employed time-lapse confocal microscopy to investigate the recruitment of LC3B (LC3), a key autophagy marker, to MCVs at the single cell level with our newly developed workflow for single cell and single MCV tracking and fluorescence quantification. We show that approximately 70% of MCVs exhibited LC3 recruitment but that was lost in about 40% of those MCVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!