Atrial fibrillation (AF) is consider to be the most common cardiac arrhythmia with an increasingly prevalence. It is postulated that the source of thromboembolism in 90% of patients with non-valvular AF arises from the left atrial appendage (LAA). Stroke is the most feared and life threatening consequence of thromboembolism. Oral anticoagulation (OAC) with vitamin-K-antagonists is the standard medical therapy for stroke prevention in patients with AF. Unfortunately, chronic therapy with vitamin-K-antagonists is contraindicated in 14% to 44% of patients with AF who are at risk for stroke, and its benefits are limited by underutilization, narrow therapeutic window and increased risk for bleeding, making it often undesired. Therefore, mechanical LAA exclusion is a means of preventing thrombus formation in the appendage and subsequent thromboembolic events in these patients. The LAA can be excluded from the systemic circulation via surgical, percutaneous, or thoracoscopic approaches. Several studies of percutaneous transcatheter delivery of dedicated LAA exclusion devices, such as the percutaneous left atrial appendage transcatheter occlusion (PLAATO) device, Watchman device and the Amplatzer cardiac plug, have shown encouraging results as an alternative to vitamin-K-antagonists therapy for selected patients, good feasibility and efficacy, with a high rate of successful implantation. We discuss the current evidence for LAA exclusion in patients and review their results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966155 | PMC |
http://dx.doi.org/10.3978/j.issn.2072-1439.2013.10.24 | DOI Listing |
Background: In developing countries, rheumatic mitral valve stenosis (MS) is still a problem and its progression leads to left atrial (LA) damage. Due to the complexity of the LA geometry, currently used techniques like antero-posterior dimension (LAD) and 2D echo derived LA volume (LAV) have several limitations that are corrected by 3D derived LA volumes in addition to functional evaluation.
Purpose: To assess the LA functions using 2D speckle tracking echocardiography and 3D transthoracic echocardiography in patients with clinically significant MS in comparison to normal healthy subjects.
JACC Cardiovasc Interv
December 2024
William Beaumont University Hospital, Corewell Health East, Royal Oak, Michigan, USA. Electronic address:
Circ Genom Precis Med
January 2025
CARIM School for Cardiovascular Diseases (A.I., S.Z., J.W., B.B., H.J.G.M.C., B.H., M.K., S.V., U.S., M.S.), Maastricht University, the Netherlands.
Background: Transcriptional dysregulation, possibly affected by genetic variation, contributes to disease development. Due to dissimilarities in development, function, and remodeling during disease progression, transcriptional differences between the left atrial (LA) and right atrial (RA) may provide insight into diseases such as atrial fibrillation.
Methods: Lateral differences in atrial transcription were evaluated in CATCH ME (Characterizing Atrial fibrillation by Translating its Causes into Health Modifiers in the Elderly) using a 2-stage discovery and replication design.
Front Cardiovasc Med
January 2025
Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
Introduction: Focal atrial tachycardia (FAT) is predominant in the pediatric population. Recent research has identified cases of sustained FAT originating from the interatrial septum (IAS); a subset of cases presents a unique challenge, with foci originating from the peri-patent foramen ovale (peri-PFO), requiring specialized management during catheter ablation. Here, we present a rare case of peri-PFO-associated FAT that resulted in tachycardia-related cardiomyopathy and propose a comprehensive multipath joint strategy for the successful treatment of PFO-associated FAT.
View Article and Find Full Text PDFESC Heart Fail
January 2025
Faculty of Medicine, Royal Brisbane and Women's Hospital, University of Queensland, Herston, Queensland, Australia.
Heart failure with preserved ejection fraction (HFpEF) is defined by heart failure (HF) with a left ventricular ejection fraction (LVEF) of at least 50%. HFpEF has a complex and heterogeneous pathophysiology with multiple co-morbidities contributing to its presentation. Establishing the diagnosis of HFpEF can be challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!