Hemileia vastatrix is the causal agent of coffee leaf rust, the most important disease of coffee Arabica. In this work, a 454-pyrosequencing transcriptome analysis of H. vastatrix germinating urediniospores (gU) and appressoria (Ap) was performed and compared to previously published in planta haustoria-rich (H) data. A total of 9234 transcripts were identified and annotated. Ca. 50% of these transcripts showed no significant homology to international databases. Only 784 sequences were shared by the three conditions, and 75% were exclusive of either gU (2146), Ap (1479) or H (3270). Relative transcript abundance and RT-qPCR analyses for a selection of genes indicated a particularly active metabolism, translational activity and production of new structures in the appressoria and intense signaling, transport, secretory activity and cellular multiplication in the germinating urediniospores, suggesting the onset of a plant-fungus dialogue as early as at the germ tube stage. Gene expression related to the production of carbohydrate-active enzymes and accumulation of glycerol in germinating urediniospores and appressoria suggests that combined lytic and physical mechanisms are involved in appressoria-mediated penetration. Besides contributing to the characterization of molecular processes leading to appressoria-mediated infection by rust fungi, these results point toward the identification of new H. vastatrix candidate virulence factors, with 516 genes predicted to encode secreted proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953675PMC
http://dx.doi.org/10.3389/fpls.2014.00088DOI Listing

Publication Analysis

Top Keywords

germinating urediniospores
12
coffee leaf
8
leaf rust
8
hemileia vastatrix
8
urediniospores appressoria
8
overview functional
4
functional virulent
4
virulent genome
4
genome coffee
4
rust pathogen
4

Similar Publications

Resistance in Soybean Against Infection by Is Induced by a Phosphite of Nickel and Potassium.

Plants (Basel)

November 2024

Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.

Article Synopsis
  • Soybean crops are significantly affected by rust epidemics caused by a specific pathogen, leading to yield losses and increased fungicide usage.
  • A study tested a phosphite solution of nickel and potassium as an induced resistance (IR) treatment, finding that it dramatically reduced the germination of rust spores and disease severity in infected soybean plants.
  • The IR treatment not only enhanced nutrient levels like potassium and nickel but also preserved the plants' photosynthetic health and boosted the expression of defense-related genes, suggesting a robust biochemical response to fungal infections.
View Article and Find Full Text PDF

Biocontrol of , the Causal Agent of Coffee Leaf Rust, by sp. NMA1017.

Plant Dis

October 2024

Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Biotecnología Microbiana, Prol. Carpio y Plan de Ayala s/n Col. Santo Tomás, Ciudad de México 11340, México.

Coffee leaf rust (CLR), caused by , is considered a highly important phytosanitary problem in Mexico. Currently, there are few microorganisms used as biocontrol alternatives to chemical control of CLR in organic coffee fields in Mexico. This study evaluates the use of sp.

View Article and Find Full Text PDF

Sphaerellopsis species are putative hyperparasites of rust fungi and may be promising biological control agents (BCA) of rust diseases. However, few detailed studies limit potential BCA development in Sphaerellopsis. Here, we explored the biogeography, host-specificity, and species diversity of Sphaerellopsis and examined the early infection stage of one species, S.

View Article and Find Full Text PDF

is the causal pathogen of myrtle rust disease of Myrtaceae. To gain understanding of the initial infection process, gene expression in germinating urediniospores and in -inoculated leaves were investigated via analyses of RNA sequencing samples taken 24 and 48 h postinoculation (hpi). Principal component analyses of transformed transcript count data revealed differential gene expression between the uninoculated control plants that correlated with the three plant leaf resistance phenotypes (immunity, hypersensitive response, and susceptibility).

View Article and Find Full Text PDF

Ten years ago, (black) stem rust - the most damaging of wheat (Triticum aestivum) rusts - re-emerged in western Europe. Disease incidences have since increased in scale and frequency. Here, we investigated the likely underlying causes and used those to propose urgently needed mitigating actions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!