Androgens have well-established anabolic actions on skeletal muscle, although the direct effects of the androgen receptor (AR) in muscle remain unclear. We generated satellite cell-specific AR-knockout (satARKO) mice in which the AR is selectively ablated in satellite cells, the muscle precursor cells. Total-limb maximal grip strength is decreased by 7% in satARKO mice, with soleus muscles containing ∼10% more type I fibers and 10% less type IIa fibers than the corresponding control littermates. The weight of the perineal levator ani muscle is markedly reduced (-52%). Thus, muscle AR is involved in fiber-type distribution and force production of the limb muscles, while it is a major determinant of the perineal muscle mass. Surprisingly, myostatin (Mstn), a strong inhibitor of skeletal muscle growth, is one of the most androgen-responsive genes (6-fold reduction in satARKO) through direct transcription activation by the AR. Consequently, muscle hypertrophy in response to androgens is augmented in Mstn-knockout mice. Our finding that androgens induce Mstn signaling to restrain their own anabolic actions has implications for the treatment of muscle wasting disorders.-Dubois, V., Laurent, M. R., Sinnesael, M., Cielen, N., Helsen, C., Clinckemalie, L., Spans, L., Gayan-Ramirez, G., Deldicque, L., Hespel, P., Carmeliet, G., Vanderschueren, D., and Claessens, F. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.14-249748DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
satellite cell-specific
12
androgen receptor
12
muscle
11
cell-specific knockout
8
knockout androgen
8
receptor reveals
8
reveals myostatin
8
myostatin direct
8
direct androgen
8

Similar Publications

Purpose: Protein supplementation has been proposed as an effective dietary strategy for maintaining or increasing skeletal muscle mass and improving physical performance in middle-aged and older adults. Diabetes mellitus exacerbates muscle mass loss, leading to many older adults with type 2 diabetes mellitus (T2DM) experiencing sarcopenia, and vice versa. Our objective was to assess the impact of increased dietary protein intake on muscle mass, strength, physical performance, and the progression of T2DM in middle-aged and older adults diagnosed with this condition.

View Article and Find Full Text PDF

The negative effects of particulate matter up to 2.5 μm in diameter (PM) and their mediating mechanisms have been studied in various tissues. However, little is known about the mechanism and long-term tracking underlying the sex-dependent effects of PM on skeletal muscle system modulation.

View Article and Find Full Text PDF

Skeletal muscle dysfunction (SMD), one of the extrapulmonary complications in patients with chronic obstructive pulmonary disease (COPD), considerably influences patient prognosis. Mitochondria regulates their dynamic networks through a mitochondria quality control (MQC) mechanism, involving mitochondrial biogenesis, mitochondrial dynamics, and mitophagy. The MQC is crucial for mitochondrial homeostasis and health, and disruption of it can lead to mitochondrial damage, which is a key factor in the structural and functional impairment of skeletal muscle in COPD.

View Article and Find Full Text PDF

This study aims to identify novel loci associated with sarcopenia-related traits in UK Biobank (UKB) through multi-trait genome-wide analysis. To identify novel loci associated with sarcopenia, we integrated the genome-wide association studies (GWAS) of usual walking pace (UWP) and hand grip strength (HGS) to conduct a joint association study known as multi-trait analysis of GWAS (MTAG). We performed a transcriptome-wide association study (TWAS) to analyze the results of MTAG in relation to mRNA expression data for genes identified in skeletal muscle.

View Article and Find Full Text PDF

Background: Apolipoprotein ε4 (APOE4) is a major risk factor for Alzheimer's disease (AD). APOE4 carriers display altered whole-body metabolism, including increased blood glucose and inuslin. Although conditions affecting whole-body metabolism like obesity and diabetes are AD risk factors, knowledge regarding the contribution of peripheral tissues to this effect is minimal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!