Inhibitory feedback from sensory pathways is important for controlling movement. Here, we characterize, for the first time, a long-latency, inhibitory spinal pathway to ankle flexors that is activated by low-threshold homonymous afferents. To examine this inhibitory pathway in uninjured, healthy participants, we suppressed motor-evoked potentials (MEPs), produced in the tibialis anterior (TA), by a prior stimulation to the homonymous common peroneal nerve (CPN). The TA MEP was suppressed by a triple-pulse stimulation to the CPN, applied 40, 50, and 60 ms earlier and at intensities of 0.5-0.7 times motor threshold (average suppression of test MEP was 33%). Whereas the triple-pulse stimulation was below M-wave and H-reflex threshold, it produced a long-latency inhibition of background muscle activity, approximately 65-115 ms after the CPN stimulation, a time period that overlapped with the test MEP. However, not all of the MEP suppression could be accounted for by this decrease in background muscle activity. Evoked responses from direct activation of the corticospinal tract, at the level of the brain stem or thoracic spinal cord, were also suppressed by low-threshold CPN stimulation. Our findings suggest that low-threshold muscle and cutaneous afferents from the CPN activate a long-latency, homonymous spinal inhibitory pathway to TA motoneurons. We propose that inhibitory feedback from spinal networks, activated by low-threshold homonymous afferents, helps regulate the activation of flexor motoneurons by the corticospinal tract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00673.2013 | DOI Listing |
J Neurosci
January 2025
Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
Layer 4 (L4) of rabbit V1 contains fast-spike GABAergic interneurons (suspected inhibitory interneurons, SINs) that receive potent synaptic input from the LGN and generate fast, local feedforward inhibition. These cells display receptive fields with overlapping ON/OFF subregions, nonlinear spatial summation, very broad orientation/directional tuning, and high spontaneous and visually driven firing rates. Fast-spike interneurons are also found in Layer 5 (L5), which receives a much sparser input from the LGN, but the response properties and thalamocortical connectivity of L5 SINs are relatively unstudied.
View Article and Find Full Text PDFExp Physiol
November 2024
Menzies Health Institute Queensland, Griffith University, Queensland, Australia.
The experience of pain that is induced by extremely cold temperatures can exert a modulatory effect on motor cortex circuitry. Although it is known that immersion of a single limb in very cold water can increase corticomotor excitability it is unknown how afferent input to the cortex shapes excitatory and inhibitory processes. Therefore, the purpose of this study was to examine motor-evoked potentials (MEP), short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI) in response to immersion of a single hand in cold water.
View Article and Find Full Text PDFJ Neurophysiol
June 2024
Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada.
During quadrupedal locomotion, interactions between spinal and supraspinal circuits and somatosensory feedback coordinate forelimb and hindlimb movements. How this is achieved is not clear. To determine whether forelimb movements modulate hindlimb cutaneous reflexes involved in responding to an external perturbation, we stimulated the superficial peroneal nerve in six intact cats during quadrupedal locomotion and during hindlimb-only locomotion (with forelimbs standing on stationary platform) and in two cats with a low spinal transection (T12-T13) during hindlimb-only locomotion.
View Article and Find Full Text PDFJ Physiol
May 2024
Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.
Brain Commun
January 2024
IRCCS Neuromed, Pozzilli, IS 86077, Italy.
In patients with Parkinson's disease, the connectivity between the two primary motor cortices may be altered. However, the correlation between asymmetries of abnormal interhemispheric connections and bradykinesia features has not been investigated. Furthermore, the potential effects of dopaminergic medications on this issue remain largely unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!