Although splitting of food items between the incisors often requires high bite forces, rarely do the teeth harmfully collide when the jaw quickly closes after split. Previous studies indicate that the force-velocity relationship of the jaw closing muscles principally explains the prompt dissipation of jaw closing force. Here, we asked whether people could regulate the dissipation of jaw closing force during food splitting. We hypothesized that such regulation might be implemented via differential recruitment of masseter muscle portions situated along the anteroposterior axis because these portions will experience a different shortening velocity during jaw closure. Study participants performed two different tasks when holding a peanut-half stacked on a chocolate piece between their incisors. In one task, they were asked to split the peanut-half only (single-split trials) and, in the other, to split both the peanut and the chocolate in one action (double-split trials). In double-split trials following the peanut split, the intensity of the tooth impact on the chocolate piece was on average 2.5 times greater than in single-split trials, indicating a substantially greater loss of jaw closing force in the single-split trials. We conclude that control of jaw closing force dissipation following food splitting depends on task demands. Consistent with our hypothesis, converging neurophysiological and morphometric data indicated that this control involved a differential activation of the jaw closing masseter muscle along the anteroposterior axis. These latter findings suggest that the regulation of jaw closing force after sudden unloading of the jaw exploits masseter muscle compartmentalization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00797.2013 | DOI Listing |
Naturwissenschaften
January 2025
Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia Universidade Federal de Santa Maria (CAPPA/UFSM, Rua Maximiliano Vizzotto, 59897230-00, São João do Polêsine, Rio Grande do Sul, Brazil.
Prozostrodontia is a clade of probainognathian cynodonts that exhibit several morphological innovations later inherited by mammals. The earliest representatives of this group have been found in the Upper Triassic deposits of southern Brazil. In this study, we report the discovery of a probainognathian cynodont from the Buriol site (São João do Polêsine, Rio Grande do Sul, Brazil), Hyperodapedon Assemblage Zone (Late Triassic).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oral and Maxillofacial Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
Background And Objectives: For the planning of surgical procedures involving the bony reconstruction of the mandible, the autologous iliac crest graft, along with the fibula graft, has become established as a preferred donor region. While computer-assisted planning methods are increasingly gaining importance, the necessary preparation of geometric data based on CT imaging remains largely a manual process. The aim of this work was to develop and test a method for the automated segmentation of the iliac crest for subsequent reconstruction planning.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. Therefore, this study explored whether human neural-crest-derived stem cells (hNTSCs) aid bone and airway mucosal regeneration during craniofacial reconstruction using a rabbit model.
View Article and Find Full Text PDFMedicina (Kaunas)
November 2024
Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy.
The purpose of this case report is to examine the management of vestibular bone fenestration during alveolar socket preservation using the Periosteal Inhibition (PI) approach. Here, for the first time, the PI technique, which has been shown to be successful in maintaining intact cortical bone, is examined in the context of a bone defect. : After an atraumatic extraction of a damaged tooth, a vestibular bone fenestration was discovered in the 62-year-old male patient.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea.
Osteopetrosis is a rare systemic skeletal disorder characterized by increased bone density and mass resulting from suboptimal or impaired resorption of osteoclastic bone. Compromised bone marrow function and associated disorders of red blood cells contribute to hematopoietic abnormalities, which exacerbate the risk of complex, recurrent infections such as jaw osteomyelitis. This case report describes the treatment of a 68-year-old Korean female with autosomal-dominant osteopetrosis who presented with severe and persistent jaw osteomyelitis complicated by hematopoietic dysregulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!