Remineralization of mechanical loaded resin-dentin interface: a transitional and synchronized multistep process.

Biomech Model Mechanobiol

Faculty of Dentistry, Dental Materials Section, University of Granada, Colegio Máximo de Cartuja s/n, 18071 , Granada, Spain,

Published: November 2014

This study evaluated the ability of different in vitro mechanical loading tests to promote new mineral formation at bonded dentin interfaces. This research demonstrated a sequential transition in the dentin remineralizing procedure through the analysis of the mineral and matrix gradients. Mechanical loading in phosphoric acid (PA)-treated samples promoted a generalized increases in relative presence of minerals, crystallinity, ratio of phosphate peaks and a decrease in the gradient of mineral content. The organic component showed, in general terms, an increase in crosslinking. [Formula: see text]-helices incremented in sine and square waveform loading. In EDTA + SB specimens, the relative mineral concentration incremented when loading in hold, in general. Nonuniform parameters of Bis-GMA and adhesive penetration were encountered in both groups. PA + SB promoted the highest dentin mineralization degree when loading in square, based on the increase in the relative presence of minerals and crystallinity. EDTA + SB produced any advance crystallographic maturity at the interface. High crosslinking parameters and conformational changes in proteins in PA-treated specimens indicated, indirectly, that the first remineralization is intrafibrillar.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10237-014-0573-9DOI Listing

Publication Analysis

Top Keywords

mechanical loading
8
relative presence
8
presence minerals
8
minerals crystallinity
8
loading
5
remineralization mechanical
4
mechanical loaded
4
loaded resin-dentin
4
resin-dentin interface
4
interface transitional
4

Similar Publications

Anticipatory postural adjustments (APAs) are responsible for a successful first step execution in handstand walking. This study evaluates gymnasts' ability to adapt their APAs and stepping parameters in response to adding/removing an external load over repeated handstand walking initiation trials. Eighteen gymnasts performed five handstand walking initiation trials without load (PRE), eight trials with an external load (LOAD) and five trials with removed load (POST).

View Article and Find Full Text PDF

Bioinspired Antiswelling Hydrogel Sensors with High Strength and Rapid Self-Recovery for Underwater Information Transmission.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Hydrogel-based sensors typically demonstrate conspicuous swelling behavior in aqueous environments, which can severely compromise the mechanical integrity and distort sensing signals, thereby considerably constraining their widespread applicability. Drawing inspiration from the multilevel heterogeneous structures in biological tissues, an antiswelling hydrogel sensor endowed with high strength, rapid self-recovery, and low swelling ratio was fabricated through a water-induced phase separation and coordination cross-linking strategy. A dense heterogeneous architecture was developed by the integration of "rigid" quadridentate carboxyl-Zr coordination bonds and "soft" hydrophobic unit-rich regions featuring π-π stacking and cation-π interactions into the hydrogels.

View Article and Find Full Text PDF

The theory of similitudes provides simple laws by which the response of one system (usually of small size) can be used to predict the response of another system (usually larger). This paper establishes the exact conditions and laws of similitude for the vibrations and acoustic radiation of a panel immersed in a heavy fluid and excited by a turbulent boundary layer. Previous work on vibroacoustic similitude had not considered the problem of a panel radiating in heavy fluid, for which the radiation impedance of the structure must be scaled.

View Article and Find Full Text PDF

Incorporation of anthocyanin into zein nanofibrous films by electrospinning: Structural characterization, functional properties, and ammonia color-responsiveness.

Food Chem X

January 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.

Green electrospinning for the production of freshness-indicating labels, employing entirely natural biopolymers and pigments, holds significance in the development of intelligent food packaging. This study aimed to prepare zein (Z) fibrous film (FF) incorporated with varying concentrations of anthocyanin (A; 0-0.5 %) through green electrospinning.

View Article and Find Full Text PDF

The human body consists of many different soft biological tissues that exhibit diverse microstructures and functions and experience diverse loading conditions. Yet, under many conditions, the mechanical behaviour of these tissues can be described well with similar nonlinearly elastic or inelastic constitutive relations, both in health and some diseases. Such constitutive relations are essential for performing nonlinear stress analyses, which in turn are critical for understanding physiology, pathophysiology and even clinical interventions, including surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!