We have used liquid exfoliation of hexagonal Boron-Nitride (BN) to prepare composites of BN nanosheets of three different sizes in polyvinylchloride matrices. These composites show low levels of reinforcement, consistent with poor alignment of the nanosheets as-described by a modified version of Halpin-Tsai theory. However, drawing of the composites to 300% strain results in a considerable increase in mechanical properties with the maximum composite modulus and strength both ∼×3 higher than that of the pristine polymer. In addition, the rate of increase of modulus with BN volume fraction was up to 3-fold larger than for the unstrained composites. This is higher than can be explained by drawing-induced alignment using Halpin-Tsai theory. However, the data was consistent with a combination of alignment and strain-induced de-aggregation of BN multilayers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr06711dDOI Listing

Publication Analysis

Top Keywords

mechanical properties
8
halpin-tsai theory
8
composites
5
enhancing mechanical
4
properties nanosheet-polymer
4
nanosheet-polymer composites
4
composites uniaxial
4
uniaxial drawing
4
drawing liquid
4
liquid exfoliation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!