In environmental epidemiology, measurements of exposure biomarkers often fall below the assay's limit of detection. Existing methods for handling this problem, including deletion, substitution, parametric regression, and multiple imputation, can perform poorly if the proportion of "nondetects" is high or parametric models are mis-specified. We propose an approach that treats the measured analyte as the modeled outcome, implying a role reversal when the analyte is a putative cause of a health outcome. Following a scale reversal as well, our approach uses Cox regression to model the analyte, with confounder adjustment. The method makes full use of quantifiable analyte measures, while appropriately treating nondetects as censored. Under the proportional hazards assumption, the hazard ratio for a binary health outcome is interpretable as an adjusted odds ratio: the odds for the outcome at any particular analyte concentration divided by the odds given a lower concentration. Our approach is broadly applicable to cohort studies, case-control studies (frequency matched or not), and cross-sectional studies conducted to identify determinants of exposure. We illustrate the method with cross-sectional survey data to assess sex as a determinant of 2,3,7,8-tetrachlorodibenzo-p-dioxin concentration and with prospective cohort data to assess the association between 2,4,4'-trichlorobiphenyl exposure and psychomotor development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966718 | PMC |
http://dx.doi.org/10.1093/aje/kwu017 | DOI Listing |
Chem Sci
January 2025
School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou 221116 China
Reactive oxygen species (ROS) play a critical role in regulating various physiological processes. To gain a comprehensive understanding of their distinct functions in different physiological events, it is imperative to detect binary ROS simultaneously. However, the development of the sensing method capable of binary ROS detection remains a significant challenge.
View Article and Find Full Text PDFChina CDC Wkly
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
Introduction: The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment.
Methods: We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples.
Water Res X
May 2025
Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy.
Pumps in Water Distribution Networks (WDNs) adequately provide effective pressure where low elevation or high head losses are detected within the system. One of the most effective strategies to ensure economic sustainability is Pump Scheduling (PS), assuring the optimization of pump management and enabling significant energy cost saving. Meta-heuristic algorithms can be applied to Pump Scheduling, given their ability to provide reliable global solutions, further complemented by limited computational efforts.
View Article and Find Full Text PDFFront Digit Health
January 2025
Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ, United States.
Background: Current methods of measuring disease progression of neurodegenerative disorders, including Parkinson's disease (PD), largely rely on composite clinical rating scales, which are prone to subjective biases and lack the sensitivity to detect progression signals in a timely manner. Digital health technology (DHT)-derived measures offer potential solutions to provide objective, precise, and sensitive measures that address these limitations. However, the complexity of DHT datasets and the potential to derive numerous digital features that were not previously possible to measure pose challenges, including in selection of the most important digital features and construction of composite digital biomarkers.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou, 450001 China.
Spectrophotometer method, ELISA, and High-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) method have been widely used to quantify and characterize the glucose released from rice after in vitro digestion. Despite this, the results of the three methods may not be comparable. This work investigated the limitation of detection (LOD) and quantification (LOQ) of the glucose released after in vitro rice digestion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!