We study the coherent and semi-coherent Al/α-Al2O3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions at the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. Our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al2O3 composite heterostructures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967201 | PMC |
http://dx.doi.org/10.1038/srep04485 | DOI Listing |
Phys Rev Lett
December 2024
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
The morphology and kinetics of the crystal growth front have been poorly explored at the particle level. Here, we experimentally observe the crystal growth front in liquid with single-particle kinetics using colloid systems and reveal a surface layer of polymorphic crystal near the solid-solid transition when the two crystals form a low-energy coherent interface. The thickness of the surface crystal can exceed 50 particles and grows logarithmically with the temperature as approaching the solid-solid transition which follows premelting theory.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.
Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.
View Article and Find Full Text PDFNat Commun
January 2025
TUM School of Natural Sciences, Department of Physics and Munich Center for Quantum Science and Technology (MCQST), Technical University of Munich, James-Franck-Str. 1, Garching, Germany.
Small registers of spin qubits in silicon can exhibit hour-long coherence times and exceeded error-correction thresholds. However, their connection to larger quantum processors is an outstanding challenge. To this end, spin qubits with optical interfaces offer key advantages: they can minimize the heat load and give access to modular quantum computing architectures that eliminate cross-talk and offer a large connectivity.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, Onderstepoort, University of Pretoria, Pretoria, South Africa.
Bovine brucellosis and bovine tuberculosis are zoonotic diseases with economic and public health importance across the world, especially in developing countries where the diseases are endemic. The diseases are classified as neglected diseases in developing nations with poor resources despite good control measures in some developed countries. The purpose of this study is to assess the knowledge, attitudes and perceptions (KAP) of stakeholders towards control measures for bovine brucellosis (BR) and bovine tuberculosis (bTB) at a livestock-wildlife interface.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
Discontinuous solid-solid phase transformations play a pivotal role in determining the properties of rechargeable battery electrodes. By leveraging operando Bragg Coherent Diffractive Imaging (BCDI), we investigate the discontinuous phase transformation in LiNiMnO within an operational Li metal coin cell. Throughout Li-intercalation, we directly observe the nucleation and growth of the Li-rich phase within the initially charged Li-poor phase in a 500 nm particle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!