Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this study is to further define transport pathways for biological thiols by blood-brain barrier (BBB) endothelial cells, as a means of identifying endogenous cytoprotective mechanisms and potential therapeutic protocols for oxidative injury. Similar low-affininty, high-capacity passive carriers for glutathione (GSH) were observed at both the luminal (blood-facing) and abluminal (brain-facing) plasma membranes of BBB endothelial cells. These carriers are voltage dependent, favoring outward movement of intact peptide across both membrane domains, including efflux at the luminal plasmalemma where γ-glutamyl transpeptidase is located. Although present at both cell surfaces, the carriers are distributed unequally, with more appearing in the abluminal membrane. By contrast, high-affinity, low-capacity sodium-dependent GSH cotransport (Na-GSH) is observed only at the abluminal membrane, indicative of an inwardly directed active peptide carrier at the brain-facing plasma membrane. Treatment of cultured BBB endothelial cells with the GSH precursor γ-glutamyl-cysteine reduces cell damage under conditions simulating ischemia and reperfusion. These findings are consistent with the presence of (1) a typical γ-glutamyl cycle at the luminal membrane of BBB endothelial cells, (2) a significant efflux pathway at the abluminal membrane allowing passive movement of BBB GSH into brain extracellular fluid, (3) a Na-dependent, brain-to-blood pathway for transcellular transport of GSH, and (4) a mechanism for cytoprotection by γ-glutamyl cysteine, under conditions of ischemia and reperfusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MJT.0b013e31829e8b7f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!