Objectives: The treatment of right ventricular failure is closely linked to effects on pulmonary vascular resistance and thus the right ventricular (RV) afterload. Medical therapy includes afterload-decreasing drugs such as nitric oxide and prostacycline. However, current devices for mechanical unloading of the right ventricle aim at a decrease in preload increasing the pulmonary volume loading. In our concept study, we tested a minimally invasive right ventricular assist device (MIRVAD) that specifically reduces the afterload.
Methods: The MIRVAD is supposed to be a foldable device for temporary transvascular placement in the pulmonary artery. We incorporated a MIRVAD prototype into a mock circulatory loop that can reproduce haemodynamic interaction between the pump and the physiological system. Pulmonary hypertension (PH), right heart failure (RHF) and MIRVAD-assisted cases were simulated. The key haemodynamic parameters for RV unloading were recorded.
Results: Mock loop simulation attested to a sufficient right ventricular unloading by serial application of a miniaturized impeller pump in the pulmonary artery. The afterload, represented by the pulmonary arterial root pressure, was recovered to the healthy range (32.62-10.93 mmHg) for the simulated PH case. In the simulated RHF case, the impaired pulmonary perfusion increased from 43.4 to 88.8% of the healthy level and the total ventricular work reduced from 0.381 to 0.197 J at a pump speed of 3500 rpm. At pump speeds higher than 3500 rpm, the pulmonary valve remains constantly open and the right ventricular configuration changes into a simple perfused hollow body.
Conclusions: The feasibility of RV unloading by a selective decrease in RV afterload was proved in principle. By alternation of the pump speed, gradual reloading in sense of a myocardial training may be achieved. The results will be validated by future animal trials where the relationship between the level of support and pulmonary vascular pressure can be investigated in vivo. Further device design concerning foldable impeller leaflets will be carried out. At a final stage, the crimped version is supposed to reach a size below 1 cm to facilitate minimally invasive insertion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/icvts/ivu067 | DOI Listing |
J Clin Invest
January 2025
Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, United States of America.
Radiotherapy can be limited by pneumonitis which is impacted by innate immunity, including pathways regulated by TRAIL death receptor DR5. We investigated whether DR5 agonists could rescue mice from toxic effects of radiation and found two different agonists, parenteral PEGylated trimeric-TRAIL (TLY012) and oral TRAIL-Inducing Compound (TIC10/ONC201) could reduce pneumonitis, alveolar-wall thickness, and oxygen desaturation. Lung protection extended to late effects of radiation including less fibrosis at 22-weeks in TLY012-rescued survivors versus un-rescued surviving irradiated-mice.
View Article and Find Full Text PDFJ Invasive Cardiol
January 2025
Department of Cardiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
J Invasive Cardiol
January 2025
Department of Echocardiography, Wuhan Asia Heart Hospital Affiliated to Wuhan University of Science and Technology. No.753 Jinghan Road, Hankou District, Wuhan, China. Email:
Curr Opin Crit Care
January 2025
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, University of Milan, Milan, Italy.
Purpose Of Review: The increasing use of prone position, in intubated patients with acute respiratory distress syndrome as well as in patients with acute hypoxemic respiratory failure receiving noninvasive respiratory support, mandates a better definition and monitoring of the response to the manoeuvre. This review will first discuss the definition of the response to prone positioning, which is still largely based on its effect on oxygenation. We will then address monitoring respiratory and hemodynamic responses to prone positioning in intubated patients.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.
Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!