Coherent control of the waveforms of recoilless γ-ray photons.

Nature

Department of Physics and Astronomy and Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843-4242, USA.

Published: April 2014

The concepts and ideas of coherent, nonlinear and quantum optics have been extended to photon energies in the range of 10-100 kiloelectronvolts, corresponding to soft γ-ray radiation (the term used when the radiation is produced in nuclear transitions) or, equivalently, hard X-ray radiation (the term used when the radiation is produced by electron motion). The recent experimental achievements in this energy range include the demonstration of parametric down-conversion in the Langevin regime, electromagnetically induced transparency in a cavity, the collective Lamb shift, vacuum-assisted generation of atomic coherences and single-photon revival in nuclear absorbing multilayer structures. Also, realization of single-photon coherent storage and stimulated Raman adiabatic passage were recently proposed in this regime. More related work is discussed in a recent review. However, the number of tools for the coherent manipulation of interactions between γ-ray photons and nuclear ensembles remains limited. Here we suggest and implement an efficient method to control the waveforms of γ-ray photons coherently. In particular, we demonstrate the conversion of individual recoilless γ-ray photons into a coherent, ultrashort pulse train and into a double pulse. Our method is based on the resonant interaction of γ-ray photons with an ensemble of nuclei with a resonant transition frequency that is periodically modulated in time. The frequency modulation, which is achieved by a uniform vibration of the resonant absorber, owing to the Doppler effect, renders resonant absorption and dispersion both time dependent, allowing us to shape the waveforms of the incident γ-ray photons. We expect that this technique will lead to advances in the emerging fields of coherent and quantum γ-ray photon optics, providing a basis for the realization of γ-ray-photon/nuclear-ensemble interfaces and quantum interference effects at nuclear γ-ray transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature13018DOI Listing

Publication Analysis

Top Keywords

γ-ray photons
24
γ-ray
9
control waveforms
8
recoilless γ-ray
8
radiation term
8
term radiation
8
radiation produced
8
coherent
6
photons
6
coherent control
4

Similar Publications

Lanthanide(III) complexes with two-photon absorbing antennas are attractive for microscopy imaging of live cells because they can be excited in the NIR. We describe the synthesis and luminescence and imaging properties of two Eu complexes, and , with (-carbazolyl)-aryl-alkynyl-picolinamide and (-carbazolyl)-aryl-picolinamide antennas, respectively, conjugated to the TAT cell-penetrating peptides. Contrary to what was previously observed with related Eu complexes with carbazole-based antennas in a mixture of water and organic solvents, these two complexes show very low emission quantum yield (Φ < 0.

View Article and Find Full Text PDF

Correction for 'From photocatalysis to photon-phonon co-driven catalysis for methanol reforming to hydrogen and valuable by-products' by Hui Wang , , 2025, https://doi.org/10.1039/d4cs00551a.

View Article and Find Full Text PDF

Evolutionary origins of synchronization for integrating information in neurons.

Front Cell Neurosci

January 2025

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.

View Article and Find Full Text PDF

Purpose: The study's purpose was to use a simple geometry phantom to validate the deformable image registration (DIR) accuracy and dose warping accuracy in carbon ion radiotherapy (CIRT) and to provide an index for dosimetry in CIRT.

Materials And Methods: We used geometric and anatomical phantoms provided by AAPM TG-132. The DIRs of 3 different settings were performed between reference and translational images for each phantom.

View Article and Find Full Text PDF

Opportunities in Bottlebrush Block Copolymers for Advanced Materials.

ACS Nano

January 2025

Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.

Bottlebrush block copolymers (BBCPs) are a unique class of materials that contain a backbone with densely grafted and chemically distinct polymeric side chains. The nonlinear architecture of BBCPs provides numerous degrees of freedom in their preparation, including control over key parameters such as grafting density, side chain length, block arrangement, and overall molecular weight. This uniquely branched structure provides BBCPs with several important distinctions from their linear counterparts, including sterically induced side chain and backbone conformations, rapid and large self-assembled nanostructures, and reduced or eliminated entanglement effects (assuming sufficient grafting density and that the molecular weight of the side chains is below their respective entanglement molecular weight).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!