Purpose Of Review: This review analyzes recent studies suggesting that highly conserved epitopes in the HIV-1 Env trimer are targets of potentially protective nonneutralizing antibodies that mediate antibody-dependent cellular cytotoxicity.
Recent Findings: Recent studies in both non-human primates and humans suggest that nonneutralizing antibodies play a role in blocking infection with hybrid simian HIV (SHIV)/simian immunodeficiency virus (SIV) or HIV-1 by Fc-mediated effector function, in particular antibody-dependent cellular cytotoxicity. Further, several studies implicate highly conserved epitopes in the C1 region of gp120 as targets of these antibodies. However, these suggestions are controversial, as passive immunization studies do not indicate that such antibodies can block acquisition in non-human primates. Potential reasons for this discrepancy are discussed in the structural context of potent antibody-dependent cellular cytotoxicity epitopes on target cells during the narrow window of opportunity when antibodies can block HIV-1 acquisition.
Summary: Cumulative evidence suggests that, in addition to virus neutralization, Fc-mediated effector responses to highly conserved epitopes in the HIV-1 trimer play distinct as well as overlapping roles in blocking HIV-1 acquisition. Evidence will be discussed as to whether nonneutralizing antibodies specific for epitopes on the HIV-1 Env trimer that become exposed during viral entry contribute significantly to blocking HIV-1 acquisition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104495 | PMC |
http://dx.doi.org/10.1097/COH.0000000000000055 | DOI Listing |
Front Immunol
January 2025
Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Donor-specific antibodies (DSAs) targeting mismatched human leukocyte antigen (HLA) molecules are one of the principal threats to long-term graft survival in solid organ transplantation. However, many patients with long-term circulating DSAs do not manifest rejection responses, suggesting a degree of heterogeneity in their pathogenicity and related functional activity. Immunologic risk stratification of transplant recipients is complicated by challenges intrinsic to defining alloantibody responses that are potentially pathogenic versus those that are not.
View Article and Find Full Text PDFCommun Med (Lond)
December 2024
Burnet Institute, Melbourne, Australia.
Background: SARS-CoV-2 transmission and COVID-19 disease severity is influenced by immunity from natural infection and/or vaccination. Population-level immunity is complicated by the emergence of viral variants. Antibody Fc-dependent effector functions are as important mediators in immunity.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2025
Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China.
Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants raise concerns about decreased vaccine efficacy, vaccines continue to confer robust protection in humans, implying that immunity beyond neutralization contributes to vaccine efficacy. In addition to neutralization, antibodies can mediate various Fc-dependent effector functions, including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent neutrophil phagocytosis (ADNP) and antibody-dependent cellular cytotoxicity (ADCC). However, the specific role of each Fc-mediated effector function in contributing to COVID-19 disease attenuation in human remains unclear.
View Article and Find Full Text PDFInt J Antimicrob Agents
December 2024
Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China. Electronic address:
J Clin Invest
November 2024
Children's Health and Discovery Initiative.
Human cytomegalovirus (HCMV) profoundly impacts host T and NK cells across the lifespan, yet how this common congenital infection modulates developing fetal immune cell compartments remains underexplored. Using cord blood from neonates with and without congenital HCMV (cCMV) infection, we identify an expansion of Fcγ receptor III-expressing (FcγRIII-expressing) CD8+ T cells following HCMV exposure in utero. Most FcγRIII+CD8+ T cells express the canonical αβ T cell receptor (TCR), but a proportion express noncanonical γδ TCR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!