Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Context: Naringenin (NRG), the aglycone flavonoid present in grapefruits, possesses anti-inflammatory, anti-carcinogenic, anti-lipid peroxidation and hepato-protective effects. However, it is poorly soluble in water and exhibits slow dissolution after oral ingestion, thus restricting its therapeutic efficacy.
Objective: With the aim to enhance the dissolution rate and oral bioavailability of NRG, solid dispersion technique has been applied using Soluplus® as carrier.
Methods: Solid dispersions of NRG were prepared by solvent evaporation and kneading methods using various ratios (1:4, 3:7, 2:3 and 1:1) of NRG:Carrier. Characterization of the optimized formulations was performed using Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The in vivo behavior of the optimized formulations was also investigated in Wistar Albino rats.
Results: NRG solid dispersion showed a significantly higher solubility and drug dissolution rate than pure NRG (p < 0.001) and it followed the Higuchi model. Among the different methods employed for the preparation of solid dispersions, solvent evaporation showed better drug release profile. DSC analysis indicated reduced crystallinity of NRG as no discrete peaks of NRG were observed. This was further substantiated by XRD analysis. Furthermore, area under the drug concentration time-curve (AUC) of NRG from solid dispersion revealed a significant increase in NRG absorption compared to NRG alone.
Conclusion: Based on these results, it was concluded that solid dispersion technique markedly enhances the in vitro drug release and in vivo behavior of the grapefruit flavonoid NRG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/03639045.2014.902466 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!