Objective: To determine the effects of UVB radiation produced by artificial lights on serum 25-hydroxyvitamin D concentrations in domestic rabbits (Oryctolagus cuniculi).

Animals: 9 juvenile domestic rabbits.

Procedures: After an acclimation period, rabbits were anesthetized with isoflurane, and an initial blood sample was collected for determination of serum 25-hydroxyvitamin D concentration. Rabbits were randomly assigned to receive 12-hour exposure to UVB radiation produced by 2 compact fluorescent lights daily (n = 5) or no UVB supplementation (4) commencing on day 1. The UVB radiation emitted into the cage was measured at 9 points approximately 34 cm from the surface of the UVB light sources (representing the position of the rabbits in the cage) after 10 hours of exposure on days 1, 8, and 14. On day 14, another blood sample was collected from anesthetized rabbits for determination of serum 25-hydroxyvitamin D concentration.

Results: The UVB radiation level was 8.3 to 58.1 μW/cm² for the exposed rabbits and consistently < 0.001 μW/cm² for the control rabbits. Mean ± SD serum 25-hydroxyvitamin D concentrations in the rabbits that were or were not provided supplemental UVB radiation for 14 days differed significantly (66.4 ± 14.3 nmol/L and 31.7 ± 9.9 nmol/L, respectively).

Conclusions And Clinical Relevance: Exposure to UVB radiation produced by artificial light significantly increased serum 25-hydroxyvitamin D concentration in juvenile rabbits. Because vitamin D is an essential hormone in vertebrates, these findings suggested that the provision of supplemental UVB radiation to captive rabbits may be important.

Download full-text PDF

Source
http://dx.doi.org/10.2460/ajvr.75.4.380DOI Listing

Publication Analysis

Top Keywords

uvb radiation
28
serum 25-hydroxyvitamin
24
radiation produced
16
produced artificial
12
25-hydroxyvitamin concentration
12
rabbits
11
uvb
9
radiation
8
artificial lights
8
lights serum
8

Similar Publications

The NAC transcription factor LpNAC48 promotes trichome formation in Lilium pumilum.

Plant Physiol

January 2025

Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.

Trichomes play a crucial role in plant resistance to abiotic and biotic stresses, and their development and characteristics vary across different species. This study demonstrates that trichomes of Lilium pumilum exhibit synchronized growth during flower bud differentiation and enhance the plant's adaptability to UV-B radiation and aphid infection. We identified LpNAC48, a NAC family transcription factor (TF), that interacted with the B-box (BBX) family TF LpBBX28, during trichome formation in L.

View Article and Find Full Text PDF

New tetrakis Eu and Gd β-diketonate complexes containing benzimidazolium (Bzim) as the counterion were synthesized by the one-pot method. The Bzim[Eu(tta)]·HO complex was further incorporated into a poly(methyl methacrylate) matrix (PMMA) at 1, 5, and 10% (w/w), which revealed highly desirable photonic features. The Eu and Gd complexes were characterized by elemental and thermal analyses, in addition to ESI-MS spectrometry, FTIR, and Raman spectroscopy.

View Article and Find Full Text PDF

Background: It is well-known that ultraviolet B (UVB) causes cataracts by inducing pyroptosis and the production of reactive oxygen species (ROS) in human lens epithelial cells (HLECs). The transcription factor E2F1 (E2F1) serves as a positive regulator of disrupted pathways involved in histone modification and cell cycle regulation. However, its function in UVB-treated HLECs remains unknown.

View Article and Find Full Text PDF

Despite extensive research, determining the optimal level of sunlight exposure for human health remains a challenge, emphasizing the need for ongoing scientific inquiry into this critical aspect of human well-being. This review aims to elucidate how different components of the solar spectrum, particularly near-infrared (NIR) radiation and ultraviolet radiation (UVR) affect human health in diverse ways depending on factors such as time of day and duration of exposure. Sunlight has beneficial effects from the production of melatonin by NIR and vitamin D by UVB.

View Article and Find Full Text PDF

The raising economic importance of cannabis arouses interest in positively influencing the secondary plant constituents through external stimuli. One potential possibility to enhance the secondary metabolite profile is the use of UV light. In this study, the influence of spectral UV quality at different intensity levels on photomorphogenesis, growth, inflorescence yield, and secondary metabolite composition was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!