Excited-state characters and dynamics of [ReCl(CO)3(3-R-1-(2-pyridyl)-imidazo[1,5-α]pyridine)] complexes (abbreviated ReGV-R, R = CH3, Ph, PhBu(t), PhCF3, PhNO2, PhNMe2) were investigated by pico- and nanosecond time-resolved infrared spectroscopy (TRIR) and excited-state DFT and TD-DFT calculations. Near UV excitation populates the lowest singlet state S1 that undergoes picosecond intersystem crossing (ISC) to the lowest triplet T1. Both states are initially formed hot and relax with ∼20 ps lifetime. TRIR together with quantum chemical calculations reveal that S1 is predominantly a ππ* state localized at the 1-(2-pyridyl)-imidazo[1,5-α]pyridine (= impy) ligand core, with impy → PhNO2 and PhNMe2 → impy intraligand charge-transfer contributions in the case of ReGV-PhNO2 and ReGV-PhNMe2, respectively. T1 is predominantly ππ*(impy) in all cases. It follows that excited singlet and corresponding triplet states have to some extent different characters and structures even if originating nominally from the same preponderant one-electron excitations. ISC occurs with a solvent-independent (CH2Cl2, MeCN) 20-30 ps lifetime, except for ReGV-PhNMe2 (10 ps in CH2Cl2, 100 ps in MeCN). ISC is 200-300 times slower than in analogous complexes with low-lying MLCT states. This difference is interpreted in terms of spin-orbit interaction and characters of orbitals involved in one-electron excitations that give rise to S1 and T1 states. ReGV-R present a unique case of octahedral heavy-metal complexes where the S1 lifetime is long enough to allow for separate spectroscopic characterization of singlet and triplet excited states. This study provides an insight into dynamics and intersystem crossing pathways of low-lying singlet and triplet excited states localized at bidentate ligands bound directly to a heavy metal atom. Rather long (1)IL lifetimes indicate the possibility of photonic applications of singlet excited states.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja413098mDOI Listing

Publication Analysis

Top Keywords

excited states
16
singlet triplet
12
states
8
phno2 phnme2
8
intersystem crossing
8
triplet states
8
one-electron excitations
8
triplet excited
8
triplet
5
excited
5

Similar Publications

Aims: Gastrointestinal stromal tumors (GISTs) account for about 80% of the mesenchymal tumors of the GI tract. About 5000-6000 patients are diagnosed in the United States (US) alone, and up to 14.5 cases per million discovered in Europe annually.

View Article and Find Full Text PDF

Near-infrared (NIR) triplet dyes are the cornerstones of cutting-edge biomedical and material applications. The difficulty in rational development of triplet dyes increases exponentially as the absorption wavelength shifts deeper into the NIR range. Although classical H-/J-typed packing of NIR dyes has the potential to enhance intersystem crossing (ISC) compared with that in single-chromophore dyes, the triplet state quantum yields remain limited in such strategy.

View Article and Find Full Text PDF

Constructing multifunctional phosphors grounded in the intricate relationship between energy level structures and luminescent properties has captivated researchers in the luminescent material field. Herein, using the embedded cluster multiconfigurational ab initio method, the energy levels of Bi in the SrLaGaO host at different geometries were calculated, which results in the establishment of complete configurational coordinate curves, yielding breathing mode vibrational frequencies and equilibrium bond lengths for all excited states. These curves supply deep insight into the luminescence properties of Bi-doped phosphors and highlight the impact of ions in the second coordination sphere on luminescence.

View Article and Find Full Text PDF

Alveolar echinococcosis (AE) is a serious parasitic infectious disease that is highly invasive and destructive to the liver and has a high mortality rate. However, currently, there is no effective targeted imaging and treatment method for the precise detection and therapy of AE. We proposed a new two-step targeting strategy (TSTS) for AE based on poly(lactic--glycolic acid) (PLGA).

View Article and Find Full Text PDF

High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!