Bidirectional chemical communication between nanomechanical switches.

Angew Chem Int Ed Engl

Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, 57068 Siegen (Germany).

Published: April 2014

The interplay of biological machines depends critically on the bidirectionality of chemical information exchange. The implementation of such a communication procedure for abiological systems is achieved using two nanoswitches that both operate as transmitters and receivers by transfering copper ions in oxidation states +I and +II. Even at micromolar concentrations, communication in both directions is remarkably fast, occurring at t1/2 =2-3 min. Metal ion translocation triggers a 20 Å relocation of the toggle at both nanoswitches, entailing major geometric and electronic changes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201400804DOI Listing

Publication Analysis

Top Keywords

bidirectional chemical
4
chemical communication
4
communication nanomechanical
4
nanomechanical switches
4
switches interplay
4
interplay biological
4
biological machines
4
machines depends
4
depends critically
4
critically bidirectionality
4

Similar Publications

A symmetrical dual-D and dual-core single-mode fiber surface plasmon resonance (SPR) liquid sensor is designed for biological detection. The dual-core design optimizes the transmission path, improves the momentum matching between free electrons and photons, and facilitates bidirectional coupling, consequently amplifying the SPR effect and enabling sensitive monitoring of the refractive index changes of biological solutions. In this structure, a gold wire is placed in the middle of the polished surface of the double-D-shaped single-mode fiber (SMF) to produce high-quality free electrons and promote the mode-coupling excitation of the SPR effect.

View Article and Find Full Text PDF

The Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO) missions have provided estimates of Terrestrial Water Storage Anomalies (TWSA) since 2002, enabling the monitoring of global hydrological changes. However, temporal gaps within these datasets and the lack of TWSA observations prior to 2002 limit our understanding of long-term freshwater variability. In this study, we develop GRAiCE, a set of four global monthly TWSA reconstructions from 1984 to 2021 at 0.

View Article and Find Full Text PDF

Binary Metal Alloy Electrocatalyst Synergistically Accelerates the Bidirectional Polysulfide Conversions in Lithium-Sulfur Batteries.

Nano Lett

January 2025

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, MOE Engineering Research Center of Photoresist Materials, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

The sluggish redox kinetics of polysulfides and the resulting shuttle effect remain significant challenges for the practical utilization of lithium-sulfur (Li-S) batteries. To address the unidirectional catalytic limitations of conventional electrocatalysts, we herein report a binary metal (CoNi) alloy embedded in a carbon matrix on carbon nanofibers (CoNi@C-CNFs) as a highly efficient electrocatalyst to accelerate bidirectional polysulfide conversions. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) reveals a significantly improved catalytic effect of the CoNi alloy toward polysulfide conversions after introducing the Ni component.

View Article and Find Full Text PDF

Comparative Analysis of Recurrent Neural Networks with Conjoint Fingerprints for Skin Corrosion Prediction.

J Chem Inf Model

January 2025

Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.

Skin corrosion assessment is an essential toxicity end point that addresses safety concerns for topical dosage forms and cosmetic products. Previously, skin corrosion assessments required animal testing; however, differences in skin architecture and ethical concerns regarding animal models have fostered the advancement of alternative methods such as and models. This study aimed to develop deep learning (DL) models based on recurrent neural networks (RNNs) for classifying skin corrosion of chemical compounds based on chemical language notation, molecular substructure, physicochemical properties, and a combination of these three properties called conjoint fingerprints.

View Article and Find Full Text PDF

Protein content is an important index in the assessment of dairy nutrition. As a crucial source of protein absorption in people's daily life, the quality of milk powder products not only has a deep impact on the development of the dairy industry, but also seriously damages the health of consumers. It is of great significance to find a faster and more accurate method for detecting milk protein content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!