Scope: Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling by tyrosine dephosphorylation of insulin receptor, and its increased activity and expression is implicated in the pathogenesis of insulin resistance. Hence, PTP1B inhibition is anticipated to improve insulin resistance in type 2 diabetic subjects. The aim of this study was to find a novel PTP1B inhibitor from medicinal food and to evaluate its antidiabetic effects.
Methods And Results: We found that saffron (Crocus sativus L.), which is used both as a spice and as a traditional medicine, potently inhibits PTP1B activity. Analyses of saffron extracts demonstrated that safranal, the saffron's aroma compound, is a principal PTP1B inhibitor, and induces a ligand-independent activation of insulin signaling in cultured myotubes. Our data implied that the molecular mechanism underlying the inactivation of PTP1B could be attributed to the covalent modification of the catalytic cysteinyl thiol by safranal through a Michael addition. Furthermore, safranal significantly enhanced glucose uptake through the translocation of glucose transporter 4. We also demonstrated that 2-wk oral administration of 20 mg/kg/day safranal improved impaired glucose tolerance in type 2 diabetic KK-A(y) mice.
Conclusion: Our results strongly suggest the usefulness of safranal in antidiabetic treatment for type 2 diabetic subjects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mnfr.201300675 | DOI Listing |
PLoS Biol
January 2025
Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Zoophysiology, Department of Biology, Aarhus University, Aarhus C, Denmark.
Aim: Snakes exhibit remarkable physiological shifts when their large meals induce robust postprandial growth after prolonged fasting. To understand the regulatory mechanisms underlying this rapid metabolic transition, we examined the regulation of protein synthesis in pythons, focusing on processes driving early postprandial tissue remodeling and growth.
Methods: Using the SUnSET method with puromycin labeling, we measured in vivo protein synthesis in fasting and digesting snakes at multiple post-feeding intervals.
FASEB J
January 2025
Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China.
Gestational Diabetes Mellitus (GDM) is the most frequent complication during pregnancy. Pharmacological interventions, such as peptide drugs that focused on improving the insulin sensitivity might be promising in the prevention and treatment of GDM. In this study, we aimed to investigate the role and mechanism of a novel peptide, named AGDMP1 (Anti-GDM peptide 1), which we previously identified lower in the serum of GDM patients using mass spectrometry, on the adipose insulin resistance in GDM.
View Article and Find Full Text PDFAging Cell
January 2025
School of Biological Sciences, University of East Anglia, Norwich, UK.
The developmental theory of ageing proposes that age-specific decline in the force of natural selection results in suboptimal levels of gene expression in adulthood, leading to functional senescence. This theory explicitly predicts that optimising gene expression in adulthood can ameliorate functional senescence and improve fitness. Reduced insulin/IGF-1 signalling (rIIS) extends the reproductive lifespan of Caenorhabditis elegans at the cost of reduced reproduction.
View Article and Find Full Text PDFMar Drugs
December 2024
College of Life Sciences, Qingdao University, Qingdao 266071, China.
Metabolic syndrome (MS) represents a complex cluster of metabolic disorders primarily characterized by obesity, insulin resistance, hyperglycemia, dyslipidemia, hypertension, and hyperuricemia. Diet and functional ingredients play a pivotal role in seeking non-pharmacological strategies to prevent and ameliorate MS. Astaxanthin (AST), a carotenoid found in various marine organisms, exhibits exceptional antioxidant properties and holds great promise as a natural compound that improves MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!