Introduction: Thyroid hormones influence multiple physiological functions, like growth, differentiation, protein synthesis and metabolic rate. The hypothyroid state is a complex hormonal dysfunction rather than a single hormonal defect. The relation between hypothyroidism after thyroidectomy and stem cells is not clear.

Aim: This study was designed to investigate the effect of thyroidectomy on the proliferation, telomerase enzyme activities, immunophenotypic properties and differentiation potentials of adipose tissue-derived (AT-) stem cells (SCs).

Materials And Methods: AT-SCs after 60 and 120 days of thyroidectomized (Tx) rats were compared to normal rats by flow cytometry and immunocytochemistry analyses, and their telomerase activities were estimated.

Results: The telomerase activity was found to be positive for AT-SCs of Tx rats of both 60 and 120 days used in this study, but a decrease was noticed in the cells with the long-term exposure to hypothyroidism. This might indicate the decrease in the regenerative ability of the AT-SCs after 120 days of Tx compared to cells after 60 days of Tx. Both cell lines were induced to differentiate into adipogenic, osteogenic and neurogenic cell lineages, but osteogenic marker expression was not detected in the undifferentiated AT-SCs of the Tx rats. Osteogenic differentiation was also failed in stem cells derived from Tx rats, shown by Alizarin red S staining and alkaline phosphates enzyme assays.

Discussion: These results suggest that hypothyroidism affected SCs, altered stem cell characteristics, like telomerase activity and loss of in vitro bone formation, but not adipogenic or neurogenic differentiation ability.

Conclusions: Hypothyroidism after Tx affects the osteogenic differentiation capacity of stem cells, which might be one of the factors of bone loss due to postnatal hypothyroidism.

Download full-text PDF

Source

Publication Analysis

Top Keywords

stem cells
20
120 days
12
thyroidectomized rats
8
differentiation capacity
8
at-scs 120
8
telomerase activity
8
at-scs rats
8
osteogenic differentiation
8
cells
7
hypothyroidism
6

Similar Publications

Cellular therapy is a promising treatment option for Peripheral Arterial Disease (PAD). Different cell types can be used to regenerate and repair tissues affected by PAD. Many studies have proposed the use of stem cells, such as mesenchymal stem cells, or even mononuclear cells isolated from peripheral blood or bone marrow, to treat PAD.

View Article and Find Full Text PDF

Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.

View Article and Find Full Text PDF

INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.

View Article and Find Full Text PDF

Introduction: Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease characterized by a lack of effective therapies. Mesenchymal stem cells (MSCs) have garnered significant interest in the realm of lung regeneration due to their abundant availability, ease of isolation, and capacity for expansion. The objective of our study was to investigate the potential therapeutic role of umbilical cord-derived MSCs (UC-MSCs) in the management of PF, with a focus on the alterations in the gut microbiota and its metabolites during the use of UC-MSCs for the treatment of pulmonary fibrosis, as well as the possible mechanisms involved.

View Article and Find Full Text PDF

Populations of very small embryonic-like stem cells (VSELs) (CD34+lin-CD45- and CD133+lin-CD45-), circulating in the peripheral blood of adults in small numbers, have been identified in several human tissues and together with the populations of hematopoietic stem cells (HSCs) (CD34+lin-CD45+) and CD133+lin-CD45+constitute a pool of cells with self-renewal and pluripotent stem cell characteristics. Using advanced cell staining and sorting strategies, we isolated populations of VSELs and HSCs for bulk RNA-Seq analysis to compare the transcriptomic profiles of both cell populations. Libraries were prepared from an extremely small number of cells; however, their good quality was preserved, and they met the criteria for sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!