Athletes competing in ultra-endurance events are advised to meet energy requirements, to supply appropriate amounts of carbohydrates (CHO), and to be adequately hydrated before and during exercise. In practice, these recommendations may not be followed because of satiety, gastrointestinal discomfort, and fatigue. The purpose of the study was to assess energy balance, macronutrient intake and hydration status before and during a 1,230-km bike marathon. A group of 14 well-trained participants (VO2max: 63.2 ± 3.3 ml/kg/min) completed the marathon after 42:47 hr. Ad libitum food and fluid intake were monitored throughout the event. Energy expenditure (EE) was derived from power output and urine and blood markers were collected before the start, after 310, 618, and 921 km, after the finish, and 12 hr after the finish. Energy intake (EI; 19,749 ± 4,502 kcal) was lower than EE (25,303 ± 2,436 kcal) in 12 of 14 athletes. EI and CHO intake (average: 57.1 ± 17.7 g/hr) decreased significantly after km 618 (p < .05). Participants ingested on average 392 ± 85 ml/hr of fluid, but fluid intake decreased after km 618 (p < .05). Hydration appeared suboptimal before the start (urine specific gravity: 1.022 ± 0.010 g/ml) but did not change significantly throughout the event. The results show that participants failed to maintain in energy balance and that CHO and fluid intake dropped below recommended values during the second half of the bike marathon. Individual strategies to overcome satiety and fatigue may be necessary to improve eating and drinking behavior during prolonged ultra-endurance exercise.

Download full-text PDF

Source
http://dx.doi.org/10.1123/ijsnem.2013-0169DOI Listing

Publication Analysis

Top Keywords

energy balance
12
bike marathon
12
fluid intake
12
balance macronutrient
8
macronutrient intake
8
intake hydration
8
hydration status
8
decreased 618
8
intake
7
energy
6

Similar Publications

Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration.

Antioxid Redox Signal

January 2025

Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.

The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology.

View Article and Find Full Text PDF

The risk of predation has always been a significant impact on wild birds. Birds, facing with limited energy, must balance their investment between foraging and vigilance. There were currently limited understandings of the vigilant behavior feedback of birds under different hunger pressure.

View Article and Find Full Text PDF

The therapeutic effects of probiotics in patients with traumatic brain injury (TBI) remain unclear. This study aimed to investigate the effects of probiotic supplementation on cell adhesion molecules, oxidative stress, and antioxidant parameters in TBI patients. This randomized, double-blind, placebo-controlled trial included 46 TBI patients who were randomly assigned to receive either a probiotic supplement (n = 23) or a placebo (n = 23) for 14 days.

View Article and Find Full Text PDF

Methionine sulfoximine (MSO) is a compound originally discovered as a byproduct of agene-based milled flour maturation. MSO irreversibly inhibits the astrocytic enzyme glutamine synthase (GS) but also interferes with the transport of glutamine (Gln) and of glutamate (Glu), and γ-aminobutyric acid (GABA) synthesized within the Glu/Gln-GABA cycle, in this way dysregulating neurotransmission balance in favor of excitation. No wonder that intraperitoneal administration of MSO has long been known to induce behavioral and/or electrographic seizures.

View Article and Find Full Text PDF

Electroencephalography microstates (EEG-MS) show promise to be a neurobiological biomarker in stroke. Thus, the aim of the study was to identify biomarkers to discriminate stroke patients from healthy individuals based on EEG-MS and clinical features using a machine learning approach. Fifty-four participants (27 stroke patients and 27 healthy age and sex-matched controls) were recruited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!