4-Alkoxy-4'-cyanoazobenzenes are organic chromophores with great applicability within present nanotechnology. However, the use of such azo dyes for obtaining light-triggered artificial muscle-like actuators remains still unexplored. Achieving further knowledge about the thermal back reaction and isomerisation mechanism for these types of azoderivatives is essential to get photo-actuators with the desired abilities. Despite the push-pull nature of the 4-alkoxy-4'-cyanoazobenzene chromophore, it has been experimentally demonstrated that it isomerises via an inversion mechanism. The opto-mechanics of the prepared elastomeric material has also been investigated. For this system, a maximum opto-mechanical response of ca. 2.5 kPa has been registered, which is independent of the working temperature of the photoactuator.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp00446a | DOI Listing |
Chem Pharm Bull (Tokyo)
January 2025
Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
Density functional theory calculations on the cyclization of di-t-butyl 2-(2-aminophenyl)-2-methyl malonate (1) to t-butyl 3-methyloxindole-3-carboxylate (2) reveal that acetic acid-assisted protonation of the carbonyl oxygen atom reduces the activation Gibbs free energy significantly lower than methanol-assisted pathways. Experimental data confirm that reaction concentration plays a pivotal role in oxindole formation. Experimental results also indicate distinct reaction mechanisms at low and high concentrations.
View Article and Find Full Text PDFChemSusChem
January 2025
Peking University, Chemistry, 292 Chengfu Rd, 100871, Beijing, CHINA.
Polyesters featuring a linear topology and in-chain 1,3-cyclobutane rings, synthesized via ring-opening polymerization (ROP) of 2-oxabicyclo[2.1.1]hexan-3-one (4R-BL, R = Bu, Ph) through a coordination-insertion mechanism, display excellent thermal and hydrolytic stability, making them promising candidates for sustainable circular materials.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
The copolymerization of ethylene with polar monomers presents a significant challenge. While palladium catalysts have shown promise, nickel catalysts are more economical but suffer from poor activity. Previous studies suggest that the isomerization step involved in the nickel-catalyzed polymerization may influence the catalyst activities.
View Article and Find Full Text PDFNanomicro Lett
January 2025
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!