This study describes the formation of macro-scale defects of the honeycomb-patterned polymer film and we discovered two types of new line defects which differ from the defects reported in the past studies. We examined the formation mechanisms of the line defects and clarified two types of formation mechanisms of the "Divergent" mode line defects and the "Convergent" mode line defects caused by the "tectonics" of water droplet arrays on polymer solutions. The regions causing the macro-scale line defects are made clear in the phase diagram represented by the radius and the density of the micro-scale water droplets. In addition, the results of our calculations made it possible to theoretically predict the water droplet growth time for the water droplets to grow to the ideal size for uniform packing that is necessary for fabrication of the defect-free honeycomb-patterned polymer film. With the use of these techniques, A4-sized, defect-free, honeycomb-patterned polymer films can be fabricated.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3sm52790eDOI Listing

Publication Analysis

Top Keywords

honeycomb-patterned polymer
16
water droplet
12
polymer film
12
defects
8
defects caused
8
droplet arrays
8
macro-scale defects
8
formation mechanisms
8
mode defects
8
water droplets
8

Similar Publications

Hybrid membranes for wastewater treatment based on polymer-coated barium titanate nanoparticles.

J Colloid Interface Sci

December 2024

Dpto. Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real (Cádiz), Spain. Electronic address:

In this work we present a series of hybrid membranes with piezocatalytic properties for wastewater treatment. For this, four types of barium titanate nanoparticles (BTO NPs) with different coatings were synthesized. These NPs were embedded in a polystyrene (PS) matrix to fabricate hybrid, porous membranes using the breath figures (BF) technique.

View Article and Find Full Text PDF

With pixel miniaturization, the performance of high-resolution quantum dot light-emitting diodes (QLEDs) usually degrades. Considering the dimension of ultrasmall pixels, herein, a barrier architecture based on localized surface plasmon resonance (LSPR) that promotes the radiative recombination of neighboring quantum dots is rationally designed to improve the device performance. Au nanoparticles (NPs) are embedded in an insulating polymer to form a honeycomb-patterned barrier layer via the nanoimprint process.

View Article and Find Full Text PDF

Novel Capturer-Catalyst Microreactor System with a Polypyrrole/Metal Nanoparticle Composite Incorporated in the Porous Honeycomb-Patterned Film.

ACS Appl Mater Interfaces

September 2023

Department of Nano Science and Engineering, Center of Nano Manufacturing, Inje University, Gimhae City 50834, Republic of Korea.

A composite of polypyrrole/metal nanoparticles (PPy/MNPs) was selectively incorporated into the pores of a honeycomb-patterned porous polycaprolactone polymer film to fabricate a novel capturer-catalyst microreactor system. This fabrication involved a modified breath figure method, where the polymer solution containing metal ions as an oxidizing agent was cast under humid conditions along with the pyrrole monomer through an interfacial reaction in a one-step in situ process. The higher hydrophilicity of the metal ions compared to the polymer solution led to their self-assembly around the pore surface, resulting in the selective incorporation of the PPy/MNP composite into the porous film.

View Article and Find Full Text PDF

Self-Assembly of CsPbBr Perovskites in Micropatterned Polymeric Surfaces: Toward Luminescent Materials with Self-Cleaning Properties.

ACS Appl Mater Interfaces

May 2022

Dpto. Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n Puerto Real, Cádiz 11510, Spain.

In this work, we present a series of porous, honeycomb-patterned polymer films containing CsPbBr perovskite nanocrystals as light emitters prepared by the breath figure approach. Microscopy analysis of the topography and composition of the material evidence that the CsPbBr nanocrystals are homogeneously distributed within the polymer matrix but preferably confined inside the pores due to the fabrication process. The optical properties of the CsPbBr nanocrystals remain unaltered after the film formation, proving that they are stable inside the polystyrene matrix, which protects them from degradation by environmental factors.

View Article and Find Full Text PDF

Modified Breath Figure Methods for the Pore-Selective Functionalization of Honeycomb-Patterned Porous Polymer Films.

Nanomaterials (Basel)

March 2022

Department of Chemistry and Nano Science and Engineering, Center of Nano Manufacturing, Inje University, Gimhae-si 50834, Korea.

Recent developments in the field of the breath figure (BF) method have led to renewed interest from researchers in the pore-selective functionalization of honeycomb-patterned (HCP) films. The pore-selective functionalization of the HCP film gives unique properties to the film which can be used for specific applications such as protein recognition, catalysis, selective cell culturing, and drug delivery. There are several comprehensive reviews available for the pore-selective functionalization by the self-assembly process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!