Metabolic interactions between vitamin A and conjugated linoleic acid.

Nutrients

Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, S.S. 554, km. 4500, Monserrato, Cagliari 09042, Italy.

Published: March 2014

Lipid-soluble molecules share several aspects of their physiology due to their common adaptations to a hydrophilic environment, and may interact to regulate their action in a tissue-specific manner. Dietary conjugated linoleic acid (CLA) is a fatty acid with a conjugated diene structure that is found in low concentrations in ruminant products and available as a nutritional supplement. CLA has been shown to increase tissue levels of retinol (vitamin A alcohol) and its sole specific circulating carrier protein retinol-binding protein (RBP or RBP4). However, the precise mechanism of this action has not been elucidated yet. Here, we provide a summary of the current knowledge in this specific area of research and speculate that retinol and CLA may compete for catabolic pathways modulated by the activity of PPAR-α and RXR heterodimer. We also present preliminary data that may position PPAR-α at the crossroads between the metabolism of lipids and vitamin A.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967192PMC
http://dx.doi.org/10.3390/nu6031262DOI Listing

Publication Analysis

Top Keywords

conjugated linoleic
8
linoleic acid
8
metabolic interactions
4
interactions vitamin
4
vitamin conjugated
4
acid lipid-soluble
4
lipid-soluble molecules
4
molecules share
4
share aspects
4
aspects physiology
4

Similar Publications

Consuming food containing ingredients with a documented impact on lipid metabolism can help fight overweight and obesity. The simplest way to reduce the level of fatty acids is to block their synthesis or increase the rate of their degradation. This study aimed to determine the effect of resveratrol, , conjugated linoleic acid (CLA), , CLA, and various variants of their combinations on de novo fatty acid biosynthesis in 3T3-L1 adipocytes.

View Article and Find Full Text PDF

Conjugated Linoleic Acid (CLA) Mitigates High-Fat Diet (HFD)-Induced Mammary Gland Development Impairment of Pubertal Mice via Regulating CD36 Palmitoylation and Downstream JNK-ERK Pathway.

J Agric Food Chem

January 2025

Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.

Conjugated linoleic acid (CLA) is known for antiobesity. However, the role of CLA in regulating high-fat diet (HFD)-impaired pubertal mammary gland development remains undefined. Here, pubertal female mice and HC11 cells were treated with HFD or palmitic acid (PA), supplemented with or without CLA, respectively.

View Article and Find Full Text PDF

The causal relationship between 233 metabolites and coronary atherosclerosis: a Mendelian randomization study.

Front Cardiovasc Med

December 2024

National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Objective: To investigate the causal relationship between 233 newly reported metabolites and coronary atherosclerosis through Mendelian randomization analysis.

Methods: Five different methods were used to perform Mendelian randomization analysis on the 233 metabolites and coronary atherosclerosis, with inverse variance weighting as the primary result, supplemented by other methods.

Results: The analysis identified that certain metabolites increase the susceptibility risk of coronary atherosclerosis, including: Total fatty acids (OR = 1.

View Article and Find Full Text PDF

Detailed DFT studies of H and C NMR chemical shifts of hydroxy secondary oxidation products of various geometric isomers of conjugated linolenic acids methyl esters are presented. Several low energy conformers were identified for model compounds of the central dienenol OH moiety, which were found to be practically independent on the various functionals and basis sets used. This greatly facilitated the minimization process of the geometric isomers of conjugated linolenic acids methyl esters.

View Article and Find Full Text PDF

Hempseed oil (HSO) is extremely rich in unsaturated fatty acids, especially linoleic (18:2 n-6) and α-linolenic (18:3 n-3) acids, which determine its high sensitivity to oxidative and photo-oxidative degradations that can lead to rancidity despite the presence of antioxidant compounds. The aim of this work was to evaluate which material/temperature/light solutions better preserve HSO quality during its shelf life and to test NIR as a rapid, non-destructive technique for monitoring oxidation phenomena. Futura 75 hemp seeds were cold-pressed; the oil was packed into 20 mL vials of four different materials (polypropylene, clear glass, amber glass, and amber glass coated with aluminum foil) and stored for 270 days at 25 °C under diffused light and at 10 °C in dark conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!