Introduction: Nucleic acid-based vaccines are being developed as a means to combine the positive attributes of both live-attenuated and subunit vaccines. Viral vectors and plasmid DNA vaccines have been extensively evaluated in human clinical trials and have been shown to be safe and immunogenic, although none have been licensed for human use. More recently, mRNA-based vaccine alternatives have emerged and might offer certain advantages over their DNA-based counterparts.
Areas Covered: This review describes the two main categories of mRNA vaccines: conventional non-amplifying and self-amplifying mRNA. It summarizes the initial clinical proof-of-concept studies and outlines the preclinical testing of the next wave of innovations for the technology. Finally, this review highlights the versatile functionality of the mRNA molecule and introduces opportunities for future improvements in vaccine design.
Expert Opinion: The prospects for mRNA vaccines are very promising. Like other types of nucleic acid vaccines, mRNA vaccines have the potential to combine the positive attributes of live attenuated vaccines while obviating many potential safety limitations. Although data from initial clinical trials appear encouraging, mRNA vaccines are far from a commercial product. These initial approaches have spurred innovations in vector design, non-viral delivery, large-scale production and purification of mRNA to quickly move the technology forward. Some improvements have already been tested in preclinical models for both prophylactic and therapeutic vaccine targets and have demonstrated their ability to elicit potent and broad immune responses, including functional antibodies, type 1 T helper cells-type T cell responses and cytotoxic T cells. Though the initial barriers for this nucleic acid vaccine approach seem to be overcome, in our opinion, the future and continued success of this approach lies in a more extensive evaluation of the many non-viral delivery systems described in the literature and gaining a better understanding of the mechanism of action to allow rational design of next generation technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/17425247.2014.901308 | DOI Listing |
J Infect
January 2025
Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
Background: Pneumococcal conjugate vaccines (PCVs) introduced in childhood national immunization programs lowered vaccine-type invasive pneumococcal disease (IPD), but replacement with non-vaccine-types persisted throughout the PCV10/13 follow-up period. We assessed PCV10/13 impact on pneumococcal meningitis incidence globally.
Methods: The number of cases with serotyped pneumococci detected in cerebrospinal fluid and population denominators were obtained from surveillance sites globally.
Viruses
January 2025
Department of Microbiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
The emergence of new variants and diverse vaccination regimens have raised uncertainty about vaccine effectiveness against SARS-CoV-2. This study aims to investigate the impact of Omicron primo-/reinfection and primary vaccination schedules on the immunogenicity of an mRNA-based booster dose over a six-month period. We conducted a prospective cohort study to assess the durability and level of antibodies of 678 healthcare workers fully vaccinated against COVID-19.
View Article and Find Full Text PDFViruses
December 2024
School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China.
Canids act as a crucial intermediary in the transmission of rabies and , serving as co-infection hosts and pathogen carriers for both rabies and hydatid disease (HD) transmitted from animals to humans. Therefore, an effective and efficient bivalent oral vaccine for preventing HD and rabies is urgently required to reduce economic losses in husbandry resulting from rabies and HD. In this study, a full-length plasmid (pcDNA4-NPM+G+EgM123+eGFP+L) carrying the gene and fluorescence reporter genes of eGFP and four auxiliary transfection plasmids of rabies virus SRV (pcDNA4-N, pcDNA4-P, pcDNA4-G, pcDNA-L) were established by reverse genetics approaches and co-transfected to BSR cells by electrotransfection.
View Article and Find Full Text PDFPathogens
January 2025
Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.
Malaria remains a critical global health issue due to high mortality rates, drug resistance, and low treatment efficacy. The genetic variability of proteins complicates the development of long-lasting immunity, as it impedes the human immune system's ability to sustain effective responses. T cells play a crucial role in combating malaria, but the parasite's complex life cycle-spanning liver and blood stages-presents significant challenges in effectively activating and targeting these cells.
View Article and Find Full Text PDFPathogens
January 2025
Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
Vaccination of COVID-19-convalescent individuals may generate 'hybrid' immunity of enhanced magnitude, durability, and cross-reactive breadth. Our primary goal was to characterize hybrid antibody (Ab) responses in a patient cohort infected with ancestral Wuhan-Hu-1 virus and vaccinated between 6 and 10 months later with the Wuhan-Hu-1-based BNT162b2 mRNA vaccine. We were particularly interested in determining the efficacy of neutralizing Ab responses against subsequently emergent SARS-CoV-2 variants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!