A diesel-degrading bacterium was isolated from a diesel-contaminated site in Selangor, Malaysia. The isolate was tentatively identified as Acinetobacter sp. strain DRY12 based on partial 16S rDNA molecular phylogeny and Biolog GN microplate panels and Microlog database. Optimum growth occurred from 3 to 5% diesel and the strain was able to tolerate as high as 8% diesel. The optimal pH that supported growth of the bacterium was between pH 7.5 to 8.0. The isolate exhibited optimal growth in between 30 and 35 degrees C. The best nitrogen source was potassium nitrate (between 0.6 and 0.9% (w/v)) followed by ammonium chloride, sodium nitrite and ammonium sulphate in descending order. An almost complete removal of diesel components was seen from the reduction in hydrocarbon peaks observed using Solid Phase Microextraction Gas Chromatography analysis after 10 days of incubation. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibiting growth with a correlation coefficient value of 0.97. The maximum growth rate- micromax was 0.039 hr(-1) while the saturation constant or half velocity constant Ks and inhibition constant Ki, were 0.387% and 4.46%, respectively. MATH assays showed that 75% of the bacterium was found in the hexadecane phase indicating that the bacterium was hydrophobic. The characteristics of this bacterium make it useful for bioremediation works in the Tropics.

Download full-text PDF

Source

Publication Analysis

Top Keywords

growth
7
bacterium
5
growth kinetics
4
kinetics diesel-degrading
4
diesel-degrading bacterial
4
bacterial strain
4
strain petroleum-contaminated
4
petroleum-contaminated soil
4
soil diesel-degrading
4
diesel-degrading bacterium
4

Similar Publications

Transcriptome and translatome profiling of Col-0 and grp7grp8 under ABA treatment in Arabidopsis.

Sci Data

December 2024

Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Abscisic acid (ABA) is a crucial phytohormone that regulates plant growth and stress responses. While substantial knowledge exists about transcriptional regulation, the molecular mechanisms underlying ABA-triggered translational regulation remain unclear. Recent advances in deep sequencing of ribosome footprints (Ribo-seq) enable the mapping and quantification of mRNA translation efficiency.

View Article and Find Full Text PDF

Introduction: Heavy metal pollution threatens the biodiversity and ecological equilibrium of the Nile River. This study investigates the impact of heavy metal pollution on aquatic animals such as Nile tilapia (Oreochromis niloticus) in the Damietta branch of the River Nile and El-Rayah El-Tawfeeky canal in Benha City in Egypt.

Methods: Fish and water samples were collected from the Damietta branch and El-Rayah El-Tawfeeky during the fall of 2022.

View Article and Find Full Text PDF

Motivation: We are witnessing an enormous growth in the amount of molecular profiling (-omics) data. The integration of multi-omics data is challenging. Moreover, human multi-omics data may be privacy-sensitive and can be misused to de-anonymize and (re-)identify individuals.

View Article and Find Full Text PDF

Background: Cutaneous melanoma is one of the most invasive and lethal skin malignant tumors. Compared to primary melanoma, metastatic melanoma (MM) presents poorer treatment outcomes and a higher mortality rate. The tumor microenvironment (TME) plays a critical role in MM progression and immunotherapy resistance.

View Article and Find Full Text PDF

Background: Despite Iran's prohibition politics regarding alcoholic beverages consumption, marketing, and trading, there is a flourishing black market. Often, alcohol producers on this black market do not adhere alcohol production standards, resulting in a lot of deaths and significant consequences each year. Accordingly, this study was carried out to identify facilitators for the growth of the black market for alcoholic beverages in Iran and provide solutions for harm reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!